forked from allora-network/basic-coin-prediction-node
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
84 lines (63 loc) · 2.32 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import json
from flask import Flask, Response
from pathlib import Path
import asyncio
import threading
from model import download_data, format_data, train_model, get_inference
from config import DATA_PROVIDER, TOKENS, data_base_path
app = Flask(__name__)
def download_train(token, DATA_PROVIDER):
TRAINING_DAYS = TOKENS[token].training_days
REGION = TOKENS[token].region
TIMEFRAME = TOKENS[token].timeframe
files = download_data(token, TRAINING_DAYS, REGION, DATA_PROVIDER)
format_data(files, DATA_PROVIDER, token)
train_model(TIMEFRAME, token)
def update_data():
threads = []
try:
for TOKEN in TOKENS.keys():
print(f"Updating data for {TOKEN}")
thread = threading.Thread(target=download_train, args=(TOKEN, DATA_PROVIDER))
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
except Exception as e:
print(f"Failed to update data: {str(e)}")
@app.route("/tokens")
async def check_tokens():
tokens = {}
names = list(TOKENS.keys())
for name in names:
tokens[name] = {
"timeframe": TOKENS[name].timeframe,
"training_days": TOKENS[name].training_days
}
return tokens
@app.route("/models")
async def check_models():
models = Path(data_base_path).glob("*.pkl")
return [str(model) for model in models]
@app.route("/update")
async def update():
try:
await asyncio.to_thread(update_data)
return "0"
except Exception:
return "1"
@app.route("/inference/<string:token>")
async def generate_inference(token: str):
TIMEFRAME = TOKENS[token.upper()].timeframe
REGION = TOKENS[token.upper()].region
if not token or token.upper() not in TOKENS.keys():
error_msg = "Token is required" if not token else "Token not supported"
return Response(json.dumps({"error": error_msg}), status=400, mimetype='application/json')
try:
inference = await asyncio.to_thread(get_inference, token.upper(), TIMEFRAME, REGION, DATA_PROVIDER)
return Response(str(inference), status=200)
except Exception as e:
return Response(json.dumps({"error": str(e)}), status=500, mimetype='application/json')
if __name__ == "__main__":
update_data()
app.run(host="0.0.0.0", port=8000)