-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclustering_test.py
40 lines (34 loc) · 1.62 KB
/
clustering_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import random
import numpy as np
import matplotlib.pyplot as plt
from nltk.metrics import edit_distance
# preform test and plot record
def preform_test(clusters, test_records, distance_algorithm, clustering_algorithm_name, is_lda=False, number_of_clusters=0):
distances = []
for i in range(len(test_records)):
min_questions_dist = 10000000
min_cluster_index = 1000000
for j in range(len(clusters)):
records_cj = clusters[j].get_records()
for k in range(len(records_cj)):
tmp = distance_algorithm(test_records[i].q_pre, records_cj[k].q_pre)
if tmp < min_questions_dist:
min_questions_dist = tmp
min_cluster_index = j
best_cluster_records = clusters[min_cluster_index].get_records()
if is_lda:
max_records_index = int(len(best_cluster_records) * .7)
else:
max_records_index = len(best_cluster_records) - 1
recommended_answer = best_cluster_records[
random.randint(0, max_records_index)].a_pre
distances.append(distance_algorithm(recommended_answer, test_records[i].a_pre))
print("Mean = ", np.mean(distances), " Variance = ", np.var(distances), "\n")
plt.hist(distances, bins=range(0, 60))
plt.title("Histogram of " + clustering_algorithm_name + " algorithm with " + distance_algorithm.__name__ +
" :" + str(number_of_clusters))
plt.xlabel("Difference")
plt.ylabel("Frequency")
plt.show()
# print(test_records[i].q_pre, " ", " ", recommended_answer, "\n",
# "***************************")