-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
224 lines (208 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import torch
from torch.utils.data import DataLoader
from torch import optim
import numpy as np
from tqdm import tqdm
from skimage import io
from options import parse_opts
import soft_renderer as sr
from dataset import CACDDataset
from model import BaseModel
from loss import BFMFaceLoss
import glob
import subprocess
# ------------------------- plot visualization --------------------------
def visualize_person(col_num, gt_imgs, recon_imgs):
num_face = len(gt_imgs)
num_cols = col_num
num_rows = int(num_face/num_cols)
if num_rows==0:
num_cols=num_face
num_rows=1
canvas = np.zeros((num_rows*224, num_cols*224*2, 3))
img_idx = 0
for i in range(num_rows):
for j in range(num_cols):
gt_img = gt_imgs[img_idx].cpu()
recon_img = recon_imgs[img_idx].cpu()
gt_img = gt_img.permute(1,2,0).cpu().numpy()
recon_img = recon_img[:3,:,:].permute(1,2,0).numpy()
canvas[i*224:(i+1)*224, j*224*2:(j+1)*224*2-224, :3] = gt_img
canvas[i*224:(i+1)*224, j*224*2+224:(j+1)*224*2, :4] = recon_img
img_idx += 1
return (np.clip(canvas,0,1)*255).astype(np.uint8)
def visualize_batch(col_num, gt_imgs, recon_imgs):
gt_imgs = gt_imgs.cpu()
recon_imgs = recon_imgs.cpu()
bs = gt_imgs.shape[0]
num_cols = col_num
num_rows = int(bs/num_cols)
canvas = np.zeros((num_rows*224, num_cols*224*2, 3))
img_idx = 0
for i in range(num_rows):
for j in range(num_cols):
gt_img = gt_imgs[img_idx].permute(1,2,0).numpy()
recon_img = recon_imgs[img_idx,:3,:,:].permute(1,2,0).numpy()
canvas[i*224:(i+1)*224, j*224*2:(j+1)*224*2-224, :3] = gt_img
canvas[i*224:(i+1)*224, j*224*2+224:(j+1)*224*2, :4] = recon_img
img_idx += 1
return (np.clip(canvas,0,1)*255).astype(np.uint8)
# ------------------------- train ---------------------------------------
def train(epoch,parser):
model=parser.model
model.train()
running_loss = []
running_img_loss = []
running_lmk_loss = []
running_creg_loss = []
running_feat_loss = []
running_gamma_loss = []
running_reflect_loss = []
loop = tqdm(enumerate(parser.train_dataloader), total=len(parser.train_dataloader))
device=parser.device
for i, data in loop:
in_img, gt_img, lmk = data
in_img = in_img.to(device); lmk = lmk.to(device)
gt_img = gt_img.to(device)
parser.optimizer.zero_grad()
recon_params = model(in_img)
loss, img_loss, lmk_loss, creg_loss, feat_loss, gamma_loss, reflect_loss,_ = parser.face_loss(recon_params, gt_img, lmk)
loss.backward()
parser.optimizer.step()
running_loss.append(loss.item())
running_img_loss.append(img_loss.item())
running_lmk_loss.append(lmk_loss.item())
running_creg_loss.append(creg_loss.item())
running_feat_loss.append(feat_loss.item())
running_gamma_loss.append(gamma_loss.item())
running_reflect_loss.append(reflect_loss.item())
loop.set_description("Loss: {:.6f}".format(np.mean(running_loss)))
if i % parser.VERBOSE_STEP == 0 and i!=0:
print ("Epoch: {:02}/{:02} Progress: {:05}/{:05} Loss: {:.6f} \
Img Loss: {:.6f} LMK Loss: {:.6f} Creg Loss {:.6f} \
Feat Loss {:.6f} Gamma Loss {:.6f} Reflect Loss {:.6f}".format(epoch+1,
parser.NUM_EPOCH,
i,
len(parser.train_dataloader),
np.mean(running_loss),
np.mean(running_img_loss),
np.mean(running_lmk_loss),
np.mean(running_creg_loss),
np.mean(running_feat_loss),
np.mean(running_gamma_loss), np.mean(running_reflect_loss)))
running_loss = []
running_img_loss = []
running_lmk_loss = []
running_creg_loss = []
running_feat_loss = []
running_gamma_loss = []
running_reflect_loss = []
return model
# ------------------------- eval ---------------------------------------
def eval(epoch,parser):
model=parser.model
model.eval()
all_loss_list = []
img_loss_list = []
lmk_loss_list = []
creg_loss_list = []
feat_loss_list = []
gamma_loss_list = []
reflect_loss_list = []
device=parser.device
with torch.no_grad():
for i, data in tqdm(enumerate(parser.val_dataloader), total=len(parser.val_dataloader)):
in_img, gt_img, lmk = data
in_img = in_img.to(device); lmk = lmk.to(device)
gt_img = gt_img.to(device)
recon_params = model(in_img)
# import pdb; pdb.set_trace()
all_loss, img_loss, lmk_loss, creg_loss, feat_loss, gamma_loss, reflect_loss, recon_img=parser.face_loss(recon_params, gt_img, lmk)
all_loss_list.append(all_loss.item())
img_loss_list.append(img_loss.item())
lmk_loss_list.append(lmk_loss.item())
creg_loss_list.append(creg_loss.item())
feat_loss_list.append(feat_loss.item())
gamma_loss_list.append(gamma_loss.item())
reflect_loss_list.append(reflect_loss.item())
if i == parser.VIS_BATCH_IDX:
parser.visual_images.append(gt_img[0])
parser.visual_faces.append(recon_img[0])
visualize_image = visualize_batch(parser.VIS_COL_NUM, gt_img, recon_img)
print ("-"*50, " Test Results ", "-"*50)
_all_loss = np.mean(all_loss_list)
_img_loss = np.mean(img_loss_list)
_lmk_loss = np.mean(lmk_loss_list)
_creg_loss = np.mean(creg_loss_list)
_feat_loss = np.mean(feat_loss_list)
_gamma_loss = np.mean(gamma_loss_list)
_reflect_loss = np.mean(reflect_loss_list)
print ("Epoch {:02}/{:02} all_loss: {:.6f} image loss: {:.6f} \
landmark loss {:.6f} Creg loss {:.6f} \
feat loss: {:.6f} gamma loss: {:.6f} reflect loss: {:.6f}".format(epoch+1, \
parser.NUM_EPOCH, _all_loss, _img_loss, _lmk_loss, _creg_loss,\
_feat_loss, _gamma_loss, _reflect_loss))
print ("-"*116)
return _all_loss, _img_loss, _lmk_loss, _creg_loss, _feat_loss, _gamma_loss, _reflect_loss, visualize_image
if __name__ == '__main__':
os.environ["CUDA_LAUNCH_BLOCKING"] ="1"
opt = parse_opts()
opt.visual_images=[]
opt.visual_faces=[]
opt.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# opt.device = torch.device('cpu')
opt.renderer = sr.SoftRasterizer(image_size=224, sigma_val=1e-4, aggr_func_rgb='hard', fill_back=False)
opt.transform = sr.LookAt(viewing_angle=30,perspective=True)
opt.lighting = sr.Lighting(intensity_ambient=1.0,intensity_directionals=0)
opt.transform.set_eyes_from_angles(opt.camera_distance, opt.elevation, opt.azimuth)
opt.face_loss = BFMFaceLoss(opt)
if not os.path.exists(opt.MODEL_SAVE_PATH):
os.makedirs(opt.MODEL_SAVE_PATH)
if not os.path.exists(opt.RESULT_SAVE_PATH):
os.makedirs(opt.RESULT_SAVE_PATH)
# -------------------------- Reproducibility ------------------------------
torch.manual_seed(opt.seed)
if not opt.device=='cuda:0':
torch.backends.cudnn.benchmark = True
if opt.accimage:
torch.backends.torchvision.set_image_backend('accimage')
# -------------------------- Dataset loading -----------------------------
opt.train_set = CACDDataset(opt.Newdataset_path+"/CACD2000_train.hdf5", opt.train_transform, opt.inv_normalize)
opt.val_set = CACDDataset(opt.Newdataset_path+"/CACD2000_val.hdf5", opt.val_transform, opt.inv_normalize)
opt.train_dataloader = DataLoader(opt.train_set, batch_size=opt.BATCH_SIZE, shuffle=True)
opt.val_dataloader = DataLoader(opt.val_set, batch_size=opt.BATCH_SIZE, shuffle=False)
# -------------------------- Model loading ------------------------------
opt.model = BaseModel(IF_PRETRAINED=False)
opt.model.to(opt.device)
opt.start_epoch = 0
if opt.MODEL_LOAD_PATH is not None:
sub_path=opt.MODEL_LOAD_PATH[opt.MODEL_LOAD_PATH.rfind('/')+7:]
epoch_num=int(sub_path[:2])
opt.start_epoch = epoch_num
opt.model.load_state_dict(torch.load(opt.MODEL_LOAD_PATH)['model'])
# -------------------------- Optimizer loading --------------------------
opt.optimizer = optim.Adam(opt.model.parameters(), lr=opt.LR)
opt.lr_schduler = optim.lr_scheduler.ReduceLROnPlateau(opt.optimizer, factor=0.2, patience=5)
if opt.MODEL_LOAD_PATH is not None:
opt.optimizer.load_state_dict(torch.load(opt.MODEL_LOAD_PATH)['optimizer'])
# ------------------------- Loss training --------------------------------
# all_loss, img_loss, lmk_loss, creg_loss, feat_loss, gamma_loss, reflect_loss, visualize_image = eval(opt.start_epoch, opt)
# io.imsave(opt.RESULT_SAVE_PATH+"/training_progress.jpg", visualize_image)
for epoch in range(opt.start_epoch,opt.NUM_EPOCH):
opt.model = train(epoch, opt)
all_loss, img_loss, lmk_loss, creg_loss, feat_loss, gamma_loss, reflect_loss, visualize_image = eval(epoch, opt)
opt.lr_schduler.step(all_loss)
io.imsave(opt.RESULT_SAVE_PATH+"/Epoch{:02}.png".\
format(epoch+1), visualize_image)
model2save = {'model': opt.model.state_dict(),
'optimizer': opt.optimizer.state_dict()}
torch.save(model2save, opt.MODEL_SAVE_PATH+"/epoch_{:02}_loss_{:.2f}_Img_loss_{:.2f}_LMK_loss{:.2f}_Creg_loss{:.2f}_Feat_loss{:.2f}_Gamma_loss{:.2f}_Ref_loss{:.2f}.pth".\
format(epoch+1, all_loss, img_loss, lmk_loss, creg_loss,feat_loss, gamma_loss, reflect_loss))
# ------------------------- Result visualization --------------------------------
if epoch % 5==0:
visualize_image=visualize_person(opt.VIS_COL_NUM, opt.visual_images, opt.visual_faces)
io.imsave(opt.RESULT_SAVE_PATH+"/training_progress.jpg", visualize_image)
img_list = sorted(glob.glob(os.path.join(opt.RESULT_SAVE_PATH+"/", "*.png")))
cmd = ["ffmpeg", "-start_number", str(opt.video_start_epoch), "-r", str(opt.video_rate), '-i', os.path.join(opt.RESULT_SAVE_PATH+"/", "Epoch%02d.png"),str(epoch)+"_Face_Recon.mp4"]
subprocess.run(cmd)