-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
235 lines (192 loc) · 9.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import logging
import math
import os
from rich import print
import datasets
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from tqdm.auto import tqdm
import diffusers
from diffusers.optimization import get_scheduler
from mmengine.config import Config, DictAction
from accelerate import DistributedDataParallelKwargs as DDPK
from src.utils.funcs import *
import wandb
# torch.autograd.set_detect_anomaly(True)conda activate /home/jovyan/boomcheng-data-shcdt/herunze/omnigen; cd /home/jovyan/boomcheng-data-shcdt/herunze/code/base
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script for System.")
parser.add_argument("--cfg", type=str, default=None, metavar='FILE', required=True)
parser.add_argument('--opt', nargs='+', action=DictAction)
args = parser.parse_args()
############################
cfg_file = args.cfg
cfg = Config.fromfile(cfg_file)
if args.opt is not None:
cfg.merge_from_dict(args.opt)
args = cfg
############################
if args.output_dir is None:
expname = cfg_file.rsplit('.',1)[0].rsplit('/',1)[-1]
if args.dirname is None:
args.dirname = cfg_file.rsplit('.',1)[0].rsplit('/',2)[-2]
if args.working_dir is None:
args.output_dir = os.path.join('./out', args.dirname, expname)
else:
args.output_dir = os.path.join(args.working_dir, expname)
mkdir(args.output_dir)
return args
def main():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs_handlers = []
if args.find_unused_parameters:
kwargs_handlers = [DDPK(find_unused_parameters=True)]
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=kwargs_handlers,
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = get_logger(__name__, log_level="INFO")
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None: set_seed(args.seed)
if accelerator.is_main_process: print(args)
from importlib import import_module
clas = getattr(import_module(args.system_cls_path), 'System')
model = clas(args, accelerator=accelerator)
model = accelerator.prepare(model)
accelerator._models = []
train_dataloader, train_dataset = accelerator.unwrap_model(model).setup_data(accelerator)
train_dataset[0]
if getattr(args, 'train_batch_size', None) is None:
args.train_batch_size = sum([t['batch_size'] for t in args.train_data])
if args.scale_lr: args.learning_rate = args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process: accelerator.init_trackers("train")
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume is not None:
global_step = accelerator.unwrap_model(model).resume(accelerator)
if args.test:
accelerator.unwrap_model(model).validation(global_step)
return
elif args.func:
func = getattr(accelerator.unwrap_model(model), args.func)
func(global_step)
return
params_lr, params = accelerator.unwrap_model(model).get_trainable_para_lr(accelerator)
optimizer = torch.optim.AdamW(
params_lr,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
)
optimizer, lr_scheduler = accelerator.prepare(optimizer, lr_scheduler)
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, ncols=300)
progress_bar.set_description("Steps")
progress_bar.update(global_step)
for epoch in range(first_epoch, args.num_train_epochs):
accelerator.unwrap_model(model).train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
if global_step >= args.max_train_steps:
break
with accelerator.accumulate(model):
loss = model(batch)
if len(loss) == 2:
loss, loss_dict = loss
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
accelerator.backward(loss)
# names = []
# for name, param in model.named_parameters():
# if param.grad is None:
# names.append(name)
# save_jsonl('no_grad.jsonl', names)
# import pdb;pdb.set_trace()
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(params, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
accelerator.unwrap_model(model).save_para(global_step, accelerator)
# if (global_step % args.metric_steps == 0 or global_step == 1) and args.use_metric:
# if accelerator.is_main_process:
# accelerator.unwrap_model(model).validation(global_step, accelerator=accelerator, test_mode=True, val_num=args.max_val_len)
# if global_step % args.validation_steps == 0:
if (global_step % args.validation_steps == 0 or global_step == 1) and args.use_metric:
if accelerator.is_main_process:
accelerator.unwrap_model(model).validation(global_step, accelerator=accelerator)
loss_dict.update(out_dir=args.output_dir)
logs = {"loss": loss.detach().item(), **loss_dict, "lr": lr_scheduler.get_last_lr()[0]}
accelerator.log(logs, step=global_step)
progress_bar.set_postfix(**logs)
global_step += 1
accelerator.unwrap_model(model).validation(global_step)
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
accelerator.end_training()
wandb.finish()
if __name__ == "__main__":
# import torch.autograd.profiler as profiler
# from torch.autograd.profiler import ProfilerActivity
# with torch.profiler.profile(
# activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
# on_trace_ready=torch.profiler.tensorboard_trace_handler('./logs'),
# ) as prof:
main()