-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAsteroid.c
313 lines (268 loc) · 9.41 KB
/
Asteroid.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
Asteroid orbit calculation
*/
#include "sunclock.h"
// Elements of currently-tracked asteroid
int aTracked = FALSE; // Tracking an asteroid ?
struct asteroid_info ast_info = {0, "-none-"}; // Information about currently-tracked asteroid
/* NOTIFY_CHANGED -- Notify everybody who cares when we change the object being tracked. */
static void notify_changed(void)
{
if (orreryPanel != NULL) { // Orrery
updateOrrery(faketime, TRUE);
UpdateWindow(orreryPanel);
}
if (skyViewPanel != NULL) { // Sky and Telescope
updateSky(faketime, TRUE);
}
planetSiteChanged(); // Planet position panel
}
/* SELECTASTEROID -- Select an asteroid to be tracked. */
void selectAsteroid(char *aname, double aelem[8])
{
if (aTracked && (strcmp(aname, ast_info.Name) == 0)) {
planets(faketime, FULL_PLANET_INFO | (1 << 10));
selectSkyObjectBin(planet_info[10].ra, planet_info[10].dec);
} else {
ast_info.cometary = FALSE;
strcpy(ast_info.Name, aname);
aTracked = (ast_info.Name[0] != '-');
if (aTracked) {
ast_info.MagH = aelem[0];
ast_info.MagG = aelem[1];
ast_info.mAnomaly = aelem[2];
ast_info.ArgP = aelem[3];
ast_info.LANode = aelem[4];
ast_info.Inclination = aelem[5];
ast_info.Eccentricity = aelem[6];
ast_info.SemiMajorAU = aelem[7];
ast_info.Epoch = aelem[8] + 2400000.5;
}
notify_changed();
}
}
/* SELECTCOMET -- Select a comet to be tracked. We calculate the equivalent fields
for asteroidal element specification to make things easier for those
(such as the orrery) who don't particularly care in which format the
elements were given. */
void selectComet(char *aname, double aelem[8])
{
if (aTracked && (strcmp(aname, ast_info.Name) == 0)) {
planets(faketime, FULL_PLANET_INFO | (1 << 10));
selectSkyObjectBin(planet_info[10].ra, planet_info[10].dec);
} else {
ast_info.cometary = TRUE;
strcpy(ast_info.Name, aname);
aTracked = (ast_info.Name[0] != '-');
if (aTracked) {
ast_info.MagH = aelem[6];
ast_info.MagG = aelem[7];
ast_info.mAnomaly = 0;
ast_info.ArgP = aelem[3];
ast_info.LANode = aelem[4];
ast_info.Inclination = aelem[5];
ast_info.Eccentricity = aelem[2];
ast_info.PeriAU = aelem[1];
ast_info.PeriDate = ast_info.Epoch = aelem[0];
if (ast_info.Eccentricity < 1.0) {
ast_info.SemiMajorAU = ast_info.PeriAU / (1.0 - ast_info.Eccentricity);
} else {
ast_info.SemiMajorAU = 6.0; // Limit parabolics to Jupiter's orbit
}
}
notify_changed();
}
}
/* gKEPLER -- Super-accurate solution to the equation of Kepler
for eccentricities from 0 through 1. */
static int gKepler(double e, double t, double q, double *v, double *r)
{
double f, x, d, m1;
int i;
#define K 0.01720209895 /* Gaussian gravitational constant */
// if (e > 0.95) {
if (e >= 1.0) {
/* Gauss method for high eccentricities. */
double a, b, c, a2, apow, b0, b1, b2, b3, c1, d1, w1, t1, t2, s, g, v1;
int s1;
static double B[] = {
1, 0, -0.017142857, -0.003809524,
-0.001104267, -0.000367358, -0.000131675, -0.000049577
};
static double S[] = {
1, -0.8, 0.04571429, 0.01523810, 0.00562820, 0.00218783,
0.00087905, 0.00036155
};
a = sqrt((1 + 9 * e) / 10);
b = 5 * (1 - e) / (1 + 9 * e);
c = sqrt(5 * (1 + e) / (1 + 9 * e));
b1 = 3 * a * K * t / sqrt(2 * q * q * q);
b2 = 1;
do {
w1 = b2 * b1;
b3 = atan2(2.0, w1);
t1 = sin(b3 / 2) / cos(b3 / 2);
s1 = sgn(t1);
t1 = abs(t1);
t2 = pow(t1, (1 / 3.0)) * s1;
g = atan(t2);
s = 2 * cos(2 * g) / sin(2 * g);
a2 = b * s * s;
b0 = b2;
b2 = 0;
if ((abs(a2) > 0.3) && (e >= 1)) {
return FALSE;
}
apow = 1.0;
for (i = 0; i < 8; i++) {
b2 += B[i] * apow;
apow *= a2;
}
} while (abs(b2 - b0) > 1E-8);
c1 = 0;
apow = 1.0;
for (i = 0; i < 8; i++) {
c1 += S[i] * apow;
apow *= a2;
}
c1 = sqrt(1 / c1);
v1 = c * c1 * s;
d1 = 1 / (1 + a2 * c1 * c1);
x = 2 * atan(v1);
*r = q * d1 * (1 + v1 * v1);
} else {
/* Solution by binary search by Roger W. Sinnott, Sky and Telescope,
Vol. 70, page 159 (August 1985). */
double m, a1, ev;
a1 = q / (1 - e);
m = K * t * pow(a1, -1.5);
f = sgn(m);
m = abs(m) / (2 * PI);
m = (m - ((int) m)) * 2 * PI * f;
if (m < 0) {
m += 2 * PI;
}
f = (m > PI) ? -1 : 1;
if (m > PI) {
m = (2 * PI) - m;
}
x = PI / 2;
d = PI / 4;
for (i = 0; i < 53; i++) {
m1 = x - e * sin(x);
x = x + sgn(m - m1) * d;
d /= 2;
}
x *= f;
ev = sqrt((1 + e) / (1 - e));
*r = a1 * (1 - e * cos(x));
x = 2 * atan2(ev * sin(x / 2), cos(x / 2));
}
if (x < 0) {
x += 2 * PI;
}
*v = x;
return TRUE;
}
static int cometary_orbit(double peri_date, double peri_dist,
double eccentricity, double arg_perihelion,
double long_asc_node, double inclination,
double jd, double *hx, double *hy, double *hz)
{
double e = dtr(obliqeq(peri_date)); /* Obliquity of the ecliptic at perihelion date */
double w = dtr(arg_perihelion);
double n = dtr(long_asc_node);
double i = dtr(inclination);
double w1, w2, n1, n2, i1, i2, e1, e2, p7, p8, p9, q7, q8, q9, v, r;
w1 = sin(w);
w2 = cos(w);
n1 = sin(n);
n2 = cos(n);
i1 = sin(i);
i2 = cos(i);
e1 = sin(e);
e2 = cos(e);
p7 = w2 * n2 - w1 * n1 * i2;
p8 = (w2 * n1 + w1 * n2 * i2) * e2 - w1 * i1 * e1;
p9 = (w2 * n1 + w1 * n2 * i2) * e1 + w1 * i1 * e2;
q7 = -w1 * n2 - w2 * n1 * i2;
q8 = (-w1 * n1 + w2 * n2 * i2) * e2 - w2 * i1 * e1;
q9 = (-w1 * n1 + w2 * n2 * i2) * e1 + w2 * i1 * e2;
if (gKepler(eccentricity, jd - peri_date, peri_dist,
&v, &r)) {
double x1, y1;
x1 = r * cos(v);
y1 = r * sin(v);
*hx = p7 * x1 + q7 * y1;
*hy = p8 * x1 + q8 * y1;
*hz = p9 * x1 + q9 * y1;
} else {
return FALSE;
}
return TRUE;
}
static int asteroidal_orbit(double epoch, double mean_anomaly, double semimajor_axis,
double eccentricity, double arg_perihelion,
double long_asc_node, double inclination,
double jd, double *hx, double *hy, double *hz)
{
return cometary_orbit(epoch -
sqrt(semimajor_axis * semimajor_axis * semimajor_axis) * mean_anomaly *
365.2422 / 360,
semimajor_axis - semimajor_axis * eccentricity,
eccentricity,
arg_perihelion,
long_asc_node,
inclination,
jd,
hx, hy, hz);
}
/* TRACKASTEROID -- Determine location of asteroid at a given point. */
void trackAsteroid(double jd, double *ra, double *dec, double *dist,
double *hlong, double *hlat, double *hrv, int quick)
{
int ok;
double x, y, z, sx, sy, sz, obelix, lon, hra, hdec;
if (ast_info.cometary) {
ok = cometary_orbit(ast_info.PeriDate, ast_info.PeriAU,
ast_info.Eccentricity, ast_info.ArgP,
ast_info.LANode, ast_info.Inclination,
jd, &x, &y, &z);
} else {
// Fill in implicit fields for asteroids
ast_info.PeriDate = ast_info.Epoch -
sqrt(ast_info.SemiMajorAU * ast_info.SemiMajorAU *
ast_info.SemiMajorAU) * ast_info.mAnomaly *
365.24219879 / 360;
ast_info.PeriAU = ast_info.SemiMajorAU * (1 - ast_info.Eccentricity);
ok = asteroidal_orbit(ast_info.Epoch, ast_info.mAnomaly, ast_info.SemiMajorAU,
ast_info.Eccentricity, ast_info.ArgP,
ast_info.LANode, ast_info.Inclination,
jd, &x, &y, &z);
}
if (ok) {
obelix = dtr(obliqeq(jd));
hra = atan2(y, x);
hdec = atan2(z, sqrt(x * x + y * y));
*hrv = sqrt(x * x + y * y + z * z);
*hlong = rtd(atan2(sin(hra) * cos(obelix) + tan(hdec) * sin(obelix), cos(hra)));
*hlat = rtd(asin(sin(hdec) * cos(obelix) - cos(hdec) * sin(obelix) * sin(hra)));
if (!quick) { // Quick calculation doesn't need RA, Dec, distance
lon = dtr(planet_info[0].hlong);
sx = planet_info[0].dist * cos(lon);
sy = planet_info[0].dist * sin(lon) * cos(obelix);
sz = planet_info[0].dist * sin(lon) * sin(obelix);
x += sx;
y += sy;
z += sz;
*ra = rtd(atan2(y, x));
*dec = rtd(atan2(z, sqrt(x * x + y * y)));
*dist = sqrt(x * x + y * y + z * z);
// *hlong = rtd(atan2(sin(dtr(*ra)) * cos(obelix) + tan(dtr(*dec)) * sin(obelix), cos(dtr(*ra))));
// *hlat = rtd(asin(sin(dtr(*dec)) * cos(obelix) - cos(dtr(*dec)) * sin(obelix) * sin(dtr(*ra))));
}
} else {
// Kepler equation solver didn't converge. Signal is hrv = 0.
*hrv = *hlong = *hlat = *ra = *dec = *dist = 0.0;
}
}