-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathmodules.py
66 lines (54 loc) · 2.41 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from torch import nn
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, transpose=False, act_norm=False):
super(BasicConv2d, self).__init__()
self.act_norm=act_norm
if not transpose:
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.conv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding,output_padding=stride //2 )
self.norm = nn.GroupNorm(2, out_channels)
self.act = nn.LeakyReLU(0.2, inplace=True)
def forward(self, x):
y = self.conv(x)
if self.act_norm:
y = self.act(self.norm(y))
return y
class ConvSC(nn.Module):
def __init__(self, C_in, C_out, stride, transpose=False, act_norm=True):
super(ConvSC, self).__init__()
if stride == 1:
transpose = False
self.conv = BasicConv2d(C_in, C_out, kernel_size=3, stride=stride,
padding=1, transpose=transpose, act_norm=act_norm)
def forward(self, x):
y = self.conv(x)
return y
class GroupConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups, act_norm=False):
super(GroupConv2d, self).__init__()
self.act_norm = act_norm
if in_channels % groups != 0:
groups = 1
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding,groups=groups)
self.norm = nn.GroupNorm(groups,out_channels)
self.activate = nn.LeakyReLU(0.2, inplace=True)
def forward(self, x):
y = self.conv(x)
if self.act_norm:
y = self.activate(self.norm(y))
return y
class Inception(nn.Module):
def __init__(self, C_in, C_hid, C_out, incep_ker=[3,5,7,11], groups=8):
super(Inception, self).__init__()
self.conv1 = nn.Conv2d(C_in, C_hid, kernel_size=1, stride=1, padding=0)
layers = []
for ker in incep_ker:
layers.append(GroupConv2d(C_hid, C_out, kernel_size=ker, stride=1, padding=ker//2, groups=groups, act_norm=True))
self.layers = nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
y = 0
for layer in self.layers:
y += layer(x)
return y