-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
1057 lines (909 loc) · 42.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import logging
import math
import os
import sys
import torch
from dataclasses import dataclass, field
import wandb
from collections import Counter
from scipy.special import softmax
from sklearn.metrics import roc_auc_score
import numpy as np
import transformers
from transformers import (
MODEL_FOR_MASKED_LM_MAPPING,
HfArgumentParser,
Trainer,
TrainingArguments,
is_torch_tpu_available,
set_seed,
EvalPrediction
)
from transformers.trainer_utils import get_last_checkpoint
import datasets
from datasets import load_dataset, load_metric
from typing import Optional, List, Dict, Any, Tuple
from utils.tokenization import MyTokenizer
from utils.configuration_utils import KGTREATConfig
from model.modeling_kgtreat import KGTREATForSequenceClassification, KGTREATForMaskedLMLP
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": "Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
vocab_file: Optional[str] = field(
default=None, metadata={"help": "The vocabulary file (a text file)"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
mask_prediction: bool = field(
default=False,
metadata={
"help": "Whether to do mask prediction"
},
)
# customized parameters
outcome_prediction: bool = field(
default=False,
metadata={
"help": "Whether to do outcome prediction"
},
)
use_kg: bool = field(
default=False,
metadata={
"help": "Whether to use knowledge graph"
},
)
sep_graph: bool = field(
default=False,
metadata={
"help": "Whether to use two separated graphs for treatment-covariate and outcome-covariate"
},
)
link_prediction: bool = field(
default=False,
metadata={
"help": "Whether to do link prediction"
},
)
time_embedding: bool = field(
default=True,
metadata={
"help": "Whether to use time_embedding"
},
)
residual_ie: int = field(
default=2,
metadata={
"help": "Whether to use residual MInt."
},
)
learning_rate_gnn: float = field(
default=1e-3, metadata={"help": "learning rate for GNN module"}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
train_data_file: List[str] = field(
default=None,
metadata={"help": "The input training data file (a text file)."}
)
eval_data_file: List[str] = field(
default=None,
metadata={"help": "The input eval data file (a text file)."}
)
data_path: str = field(
default=None,
metadata={"help": "The input training data path (directory)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[float] = field(
default=1,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated."
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
# customized parameters
compared_drug: str = field(
default=None,
metadata={
"help": "compared_drug"
},
)
target_drug: str = field(
default=None,
metadata={
"help": "target_drug"
},
)
baseline_window: int = field(
default=90,
metadata={
"help": "baseline_windowe"
},
)
fix_window_length: int = field(
default=30,
metadata={
"help": "fix_window_length"
},
)
training_set_fraction: float = field(
default=1,
metadata={
"help": "training_set_fraction"
},
)
max_node_num: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total input KG node length after tokenization. Sequences longer "
"than this will be truncated."
},
)
ent_emb_paths: Optional[str] = field(
default=None,
metadata={
"help": "pretrained entity embeddings."
},
)
n_runs: int = field(
default=0,
metadata={
"help": "n_runs"
},
)
wandb_mode: Optional[str] = field(
default='offline',
metadata={
"help": "wandb mode: online, offline."
},
)
clean_out: str = field(
default=None,
metadata={
"help": "clean_out"
},
)
@dataclass
class myDataCollator:
mask_prediction: bool = False
outcome_prediction: bool = False
use_kg: bool = False
link_prediction: bool = False
mlm_probability: float = 0.15
tokenizer: MyTokenizer = None
def __call__(self, batch: List[Dict[str, Any]]) -> Dict[str, Any]:
input_ids = []
attention_mask = []
token_type_ids = []
visit_time_ids = []
physical_time_ids = []
for b in batch:
input_ids.append(b['input_ids'])
attention_mask.append(b['attention_mask'])
token_type_ids.append(b['token_type_ids'])
visit_time_ids.append(b['visit_time_ids'])
physical_time_ids.append(b['physical_time_ids'])
input_ids = torch.tensor(input_ids,dtype=torch.long)
attention_mask = torch.tensor(attention_mask,dtype=torch.long)
token_type_ids = torch.tensor(token_type_ids,dtype=torch.long)
visit_time_ids = torch.tensor(visit_time_ids, dtype=torch.long)
physical_time_ids = torch.tensor(physical_time_ids, dtype=torch.long)
batch_out = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"visit_time_ids": visit_time_ids,
"physical_time_ids": physical_time_ids,
}
if self.use_kg:
concept_ids = []
node_type_ids = []
adj_lengths = []
special_nodes_mask = []
edge_index = []
edge_type = []
for b in batch:
# construct gnn input
concept_ids.append(b['concept_ids'])
node_type_ids.append(b['node_type_ids'])
adj_lengths.append(b['adj_lengths'])
special_nodes_mask.append(b['special_nodes_mask'])
edge_index.append(torch.tensor(b['edge_index']))
edge_type.append(torch.tensor(b['edge_type']))
concept_ids = torch.tensor(concept_ids, dtype=torch.long)
node_type_ids = torch.tensor(node_type_ids, dtype=torch.long)
adj_lengths = torch.tensor(adj_lengths, dtype=torch.long)
special_nodes_mask = torch.tensor(special_nodes_mask, dtype=torch.long)
batch_out['concept_ids'] = concept_ids
batch_out['node_type_ids'] = node_type_ids
batch_out['adj_lengths'] = adj_lengths
batch_out['special_nodes_mask'] = special_nodes_mask
batch_out['edge_index'] = edge_index
batch_out['edge_type'] = edge_type
if self.link_prediction:
edge_index, edge_type, pos_triples, neg_nodes = self.process_graph_data(edge_index, edge_type,
node_type_ids)
batch_out['edge_index'] = edge_index
batch_out['edge_type'] = edge_type
batch_out['pos_triples'] = pos_triples
batch_out['neg_nodes'] = neg_nodes
if self.mask_prediction:
input_ids, mask_labels, token_type_ids = self.torch_mask_tokens(input_ids,token_type_ids)
batch_out['input_ids'] = input_ids
batch_out['mask_labels'] = mask_labels
batch_out['token_type_ids'] = token_type_ids
if self.outcome_prediction:
outcome_labels = [b['outcome'] for b in batch]
outcome_labels = torch.tensor(outcome_labels, dtype=torch.long)
treatment_labels = [b['treatment_label'] for b in batch]
treatment_labels = torch.tensor(treatment_labels, dtype=torch.long)
# input_ids_cf = [b['input_ids_cf'] for b in batch]
# input_ids_cf = torch.tensor(input_ids_cf, dtype=torch.long)
batch_out['outcome_labels'] = outcome_labels
batch_out['treatment_labels'] = treatment_labels
# batch_out['input_ids_cf'] = input_ids_cf
return batch_out
def torch_mask_tokens(self, inputs: Any, token_type_ids: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = torch.full(labels.shape, self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in
labels.tolist()
]
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
else:
special_tokens_mask = special_tokens_mask.bool()
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.vocab.get(self.tokenizer.mask_token)
#
# # 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
#
# # The rest of the time (10% of the time) we keep the masked input tokens unchanged
# indices_replaced = torch.bernoulli(torch.full(labels.shape, 1.0)).bool() & masked_indices
# mask_token_id = self.tokenizer.vocab.get(self.tokenizer.mask_token)
# inputs[indices_replaced] = mask_token_id
# token_type_ids[indices_replaced] = self.tokenizer.convert_token_ids_to_token_type_ids(mask_token_id)
return inputs, labels, token_type_ids
def process_graph_data(self, edge_index, edge_type, node_type_ids):
# edge_index: nested list of shape (n_samples, ), where each entry is tensor[2, E]
# edge_type: nested list of shape (n_samples, ), where each entry is tensor[E, ]
# node_type_ids: tensor[n_samples, num_nodes]
bs = len(edge_index)
input_edge_index, input_edge_type, pos_triples, neg_nodes = [], [], [], []
non_zero_edge = []
for bid in range(bs):
_edge_index = edge_index[bid] # .clone()
_edge_type = edge_type[bid] # .clone()
_node_type_ids = node_type_ids[bid] # .clone()
_edge_index, _edge_type, _pos_triples, _neg_nodes = self._process_one_graph(_edge_index, _edge_type,
_node_type_ids)
non_zero_edge.append(1)
input_edge_index.append(_edge_index)
input_edge_type.append(_edge_type)
pos_triples.append(_pos_triples)
neg_nodes.append(_neg_nodes)
input_edge_index = list(
map(list, zip(*(iter(input_edge_index),)))) # nested list of shape (n_samples, )
input_edge_type = list(map(list, zip(*(iter(input_edge_type),))))
pos_triples = list(map(list, zip(*(iter(pos_triples),))))
neg_nodes = list(map(list, zip(*(iter(neg_nodes),))))
return input_edge_index, input_edge_type, pos_triples, neg_nodes
def _process_one_graph(self, _edge_index, _edge_type, _node_type_ids):
# _edge_index: tensor[2, E]
# _edge_type: tensor[E, ]
# _node_type_ids: tensor[n_nodes, ]
E = len(_edge_type)
if E == 0:
# print ('KG with 0 node', file=sys.stderr)
effective_num_nodes = 1
else:
effective_num_nodes = int(_edge_index.max()) + 1
device = _edge_type.device
tmp = _node_type_ids.max().item()
assert isinstance(tmp, int) and 0 <= tmp <= 5
try:
_edge_index_node_type = _node_type_ids[_edge_index] # [2, E]
except:
print(_edge_index)
print(_edge_index.shape)
print(_edge_index.dtype)
_is_special = (_edge_index_node_type == 3) # [2, E]
is_special = _is_special[0] | _is_special[1] # [E,]
positions = torch.arange(E)
positions = positions[~is_special] # [some_E, ]
drop_count = min(100, int(len(positions) * 0.15))
if len(positions) > 0 and drop_count > 0:
drop_idxs = torch.multinomial(torch.full((len(positions),), 1.0), drop_count,
replacement=False) # [drop_count, ]
else:
drop_idxs = torch.tensor([]).long()
drop_positions = positions[drop_idxs] # [drop_count, ]
mask = torch.zeros((E,)).long() # [E, ]
mask = mask.index_fill_(dim=0, index=drop_positions, value=1).bool().to(device) # [E, ]
real_drop_count = int(drop_count * (1 - 0.1))
real_drop_positions = positions[drop_idxs[:real_drop_count]] # [real_drop_count, ]
real_mask = torch.zeros((E,)).long() # [E, ]
real_mask = real_mask.index_fill_(dim=0, index=real_drop_positions, value=1).bool().to(device) # [E, ]
assert int(mask.long().sum()) == drop_count
# print (f'drop_E / total_E = {drop_count} / {E} = {drop_count / E}', ) #E is typically 1000-3000
input_edge_index = _edge_index[:, ~real_mask]
input_edge_type = _edge_type[~real_mask]
assert input_edge_index.size(1) == E - real_drop_count
pos_edge_index = _edge_index[:, mask]
pos_edge_type = _edge_type[mask]
pos_triples = [pos_edge_index[0], pos_edge_type, pos_edge_index[1]]
# pos_triples: list[h, r, t], where each of h, r, t is [n_triple, ]
assert pos_edge_index.size(1) == drop_count
num_edges = len(pos_edge_type)
num_corruption = 64
neg_nodes = torch.randint(0, effective_num_nodes, (num_edges, num_corruption),
device=device) # [n_triple, n_neg]
return input_edge_index, input_edge_type, pos_triples, neg_nodes
@dataclass
class myDataCollatorForSepGraphs:
mask_prediction: bool = False
outcome_prediction: bool = False
use_kg: bool = False
link_prediction: bool = False
mlm_probability: float = 0.15
tokenizer: MyTokenizer = None
def __call__(self, batch: List[Dict[str, Any]]) -> Dict[str, Any]:
input_ids = []
attention_mask = []
token_type_ids = []
visit_time_ids = []
physical_time_ids = []
sep_graph_labels = []
num_pair = len(batch[0]['input_ids'])
for b in batch:
for i in range(num_pair):
input_ids.append(b['input_ids'][i])
attention_mask.append(b['attention_mask'][i])
token_type_ids.append(b['token_type_ids'][i])
visit_time_ids.append(b['visit_time_ids'][i])
physical_time_ids.append(b['physical_time_ids'][i])
sep_graph_labels.append(b['sep_graph_label'][i])
input_ids = torch.tensor(input_ids, dtype=torch.long)
attention_mask = torch.tensor(attention_mask, dtype=torch.long)
token_type_ids = torch.tensor(token_type_ids, dtype=torch.long)
visit_time_ids = torch.tensor(visit_time_ids, dtype=torch.long)
physical_time_ids = torch.tensor(physical_time_ids, dtype=torch.long)
sep_graph_labels = torch.tensor(sep_graph_labels, dtype=torch.long)
batch_out = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"visit_time_ids": visit_time_ids,
"physical_time_ids": physical_time_ids,
"sep_graph_labels": sep_graph_labels,
}
if self.use_kg:
concept_ids = []
node_type_ids = []
adj_lengths = []
special_nodes_mask = []
edge_index = []
edge_type = []
for b in batch:
# construct gnn input
for i in range(num_pair):
concept_ids.append(b['concept_ids'][i])
node_type_ids.append(b['node_type_ids'][i])
adj_lengths.append(b['adj_lengths'][i])
special_nodes_mask.append(b['special_nodes_mask'][i])
edge_index.append(torch.tensor(b['edge_index'][i]))
edge_type.append(torch.tensor(b['edge_type'][i]))
concept_ids = torch.tensor(concept_ids, dtype=torch.long)
node_type_ids = torch.tensor(node_type_ids, dtype=torch.long)
adj_lengths = torch.tensor(adj_lengths, dtype=torch.long)
special_nodes_mask = torch.tensor(special_nodes_mask, dtype=torch.long)
batch_out['concept_ids'] = concept_ids
batch_out['node_type_ids'] = node_type_ids
batch_out['adj_lengths'] = adj_lengths
batch_out['special_nodes_mask'] = special_nodes_mask
batch_out['edge_index'] = edge_index
batch_out['edge_type'] = edge_type
if self.link_prediction:
edge_index, edge_type, pos_triples, neg_nodes = self.process_graph_data(edge_index, edge_type,
node_type_ids)
batch_out['edge_index'] = edge_index
batch_out['edge_type'] = edge_type
batch_out['pos_triples'] = pos_triples
batch_out['neg_nodes'] = neg_nodes
if self.mask_prediction:
input_ids, mask_labels, token_type_ids = self.torch_mask_tokens(input_ids, token_type_ids)
batch_out['input_ids'] = input_ids
batch_out['mask_labels'] = mask_labels
batch_out['token_type_ids'] = token_type_ids
if self.outcome_prediction:
outcome_labels = []
treatment_labels = []
for b in batch:
for i in range(num_pair):
outcome_labels.append(b['outcome'][i])
treatment_labels.append(b['treatment_label'][i])
outcome_labels = torch.tensor(outcome_labels, dtype=torch.long)
treatment_labels = torch.tensor(treatment_labels, dtype=torch.long)
batch_out['outcome_labels'] = outcome_labels
batch_out['treatment_labels'] = treatment_labels
# batch_out['input_ids_cf'] = input_ids_cf
return batch_out
def torch_mask_tokens(self, inputs: Any, token_type_ids: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[
Any, Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = torch.full(labels.shape, self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in
labels.tolist()
]
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
else:
special_tokens_mask = special_tokens_mask.bool()
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.vocab.get(self.tokenizer.mask_token)
#
# # 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
#
# # The rest of the time (10% of the time) we keep the masked input tokens unchanged
# indices_replaced = torch.bernoulli(torch.full(labels.shape, 1.0)).bool() & masked_indices
# mask_token_id = self.tokenizer.vocab.get(self.tokenizer.mask_token)
# inputs[indices_replaced] = mask_token_id
# token_type_ids[indices_replaced] = self.tokenizer.convert_token_ids_to_token_type_ids(mask_token_id)
return inputs, labels, token_type_ids
def process_graph_data(self, edge_index, edge_type, node_type_ids):
# edge_index: nested list of shape (n_samples, ), where each entry is tensor[2, E]
# edge_type: nested list of shape (n_samples, ), where each entry is tensor[E, ]
# node_type_ids: tensor[n_samples, num_nodes]
bs = len(edge_index)
input_edge_index, input_edge_type, pos_triples, neg_nodes = [], [], [], []
non_zero_edge = []
for bid in range(bs):
_edge_index = edge_index[bid] # .clone()
_edge_type = edge_type[bid] # .clone()
_node_type_ids = node_type_ids[bid] # .clone()
_edge_index, _edge_type, _pos_triples, _neg_nodes = self._process_one_graph(_edge_index, _edge_type,
_node_type_ids)
non_zero_edge.append(1)
input_edge_index.append(_edge_index)
input_edge_type.append(_edge_type)
pos_triples.append(_pos_triples)
neg_nodes.append(_neg_nodes)
input_edge_index = list(
map(list, zip(*(iter(input_edge_index),)))) # nested list of shape (n_samples, )
input_edge_type = list(map(list, zip(*(iter(input_edge_type),))))
pos_triples = list(map(list, zip(*(iter(pos_triples),))))
neg_nodes = list(map(list, zip(*(iter(neg_nodes),))))
return input_edge_index, input_edge_type, pos_triples, neg_nodes
def _process_one_graph(self, _edge_index, _edge_type, _node_type_ids):
# _edge_index: tensor[2, E]
# _edge_type: tensor[E, ]
# _node_type_ids: tensor[n_nodes, ]
E = len(_edge_type)
if E == 0:
# print ('KG with 0 node', file=sys.stderr)
effective_num_nodes = 1
else:
effective_num_nodes = int(_edge_index.max()) + 1
device = _edge_type.device
tmp = _node_type_ids.max().item()
assert isinstance(tmp, int) and 0 <= tmp <= 5
try:
_edge_index_node_type = _node_type_ids[_edge_index] # [2, E]
except:
print(_edge_index)
print(_edge_index.shape)
print(_edge_index.dtype)
_is_special = (_edge_index_node_type == 3) # [2, E]
is_special = _is_special[0] | _is_special[1] # [E,]
positions = torch.arange(E)
positions = positions[~is_special] # [some_E, ]
drop_count = min(100, int(len(positions) * 0.15))
if len(positions) > 0 and drop_count > 0:
drop_idxs = torch.multinomial(torch.full((len(positions),), 1.0), drop_count,
replacement=False) # [drop_count, ]
else:
drop_idxs = torch.tensor([]).long()
drop_positions = positions[drop_idxs] # [drop_count, ]
mask = torch.zeros((E,)).long() # [E, ]
mask = mask.index_fill_(dim=0, index=drop_positions, value=1).bool().to(device) # [E, ]
real_drop_count = int(drop_count * (1 - 0.1))
real_drop_positions = positions[drop_idxs[:real_drop_count]] # [real_drop_count, ]
real_mask = torch.zeros((E,)).long() # [E, ]
real_mask = real_mask.index_fill_(dim=0, index=real_drop_positions, value=1).bool().to(device) # [E, ]
assert int(mask.long().sum()) == drop_count
# print (f'drop_E / total_E = {drop_count} / {E} = {drop_count / E}', ) #E is typically 1000-3000
input_edge_index = _edge_index[:, ~real_mask]
input_edge_type = _edge_type[~real_mask]
assert input_edge_index.size(1) == E - real_drop_count
pos_edge_index = _edge_index[:, mask]
pos_edge_type = _edge_type[mask]
pos_triples = [pos_edge_index[0], pos_edge_type, pos_edge_index[1]]
# pos_triples: list[h, r, t], where each of h, r, t is [n_triple, ]
assert pos_edge_index.size(1) == drop_count
num_edges = len(pos_edge_type)
num_corruption = 64
neg_nodes = torch.randint(0, effective_num_nodes, (num_edges, num_corruption),
device=device) # [n_triple, n_neg]
return input_edge_index, input_edge_type, pos_triples, neg_nodes
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if training_args.report_to != 'none':
wandb.init(project="CausalKG", entity="yxqq", mode=data_args.wandb_mode, name=training_args.output_dir)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed+data_args.n_runs)
# Load dataset
if model_args.outcome_prediction:
compared_drug = data_args.compared_drug
target_drug = data_args.target_drug
data_args.train_data_file = [
os.path.join(data_args.data_path, target_drug)]
myTokenizer = MyTokenizer(
vocab_file=model_args.vocab_file,
baseline_window=data_args.baseline_window,
fix_window_length=data_args.fix_window_length,
treatment_list=[compared_drug.split('.')[0],
target_drug.split('.')[0]],
use_kg=model_args.use_kg,
sep_graph=model_args.sep_graph,
)
else:
data_args.train_data_file = [os.path.join(data_args.data_path, file)
for file in os.listdir(data_args.data_path)]
myTokenizer = MyTokenizer(
vocab_file=model_args.vocab_file,
baseline_window=data_args.baseline_window,
fix_window_length=data_args.fix_window_length,
treatment_list=None,
use_kg=model_args.use_kg,
sep_graph=model_args.sep_graph,
)
if data_args.eval_data_file:
data_files = {"train": data_args.train_data_file, "validation": data_args.eval_data_file}
raw_datasets = load_dataset('json', data_files=data_files, field="data")
else:
data_files = {"train": data_args.train_data_file}
raw_datasets = load_dataset('json', data_files=data_files, field="data",cache_dir=model_args.cache_dir)
if model_args.outcome_prediction:
overlap_pids = [data['pid'] for data in raw_datasets['train']]
overlap_pids = Counter(overlap_pids)
overlap_pids = [pid for pid in overlap_pids if overlap_pids[pid] > 1]
raw_datasets = raw_datasets.filter(lambda example: example['pid'] not in overlap_pids)
if data_args.validation_split_percentage > 0:
raw_datasets = raw_datasets['train'].train_test_split(test_size=data_args.validation_split_percentage / 100,
seed=data_args.n_runs+training_args.seed)
raw_datasets['train'] = raw_datasets['train'].select(
range(int(data_args.training_set_fraction * len(raw_datasets['train']))))
test_valid = raw_datasets['test'].train_test_split(test_size=0.5)
raw_datasets['validation'] = test_valid['train']
raw_datasets['test'] = test_valid['test']
max_seq_length = data_args.max_seq_length
max_node_num = data_args.max_node_num
def prepare_data_for_sep_graphs(example):
result = myTokenizer.encode(example, max_length=max_seq_length, max_node_num=max_node_num)
outcomes = example['outcome']
result['outcome'] = list(outcomes.values())[0]
pair_result = {}
gnn_keys = ['concept_ids', 'node_type_ids', 'adj_lengths', 'special_nodes_mask', 'edge_index', 'edge_type']
gnn_keys_ = [key+'_t' for key in gnn_keys] + [key+'_o' for key in gnn_keys]
for key in result.keys() - set(gnn_keys_):
pair_result[key] = [result[key], result[key]]
for key in gnn_keys:
pair_result[key] = [result[f'{key}_t'], result[f'{key}_o']]
# add additional separate graph label to indicate whether the graph is treatment-covariate or outcome-covariate.
# 1: treatment graph, 0: outcome graph
pair_result['sep_graph_label'] = [1, 0]
return pair_result
tokenized_datasets = raw_datasets.map(prepare_data_for_sep_graphs, batched=False, num_proc=16,
load_from_cache_file=not data_args.overwrite_cache)
data_collator = myDataCollatorForSepGraphs(
tokenizer=myTokenizer,
mask_prediction=model_args.mask_prediction,
outcome_prediction=model_args.outcome_prediction,
link_prediction=model_args.link_prediction,
use_kg=model_args.use_kg
)
if model_args.use_kg:
tokenized_datasets = tokenized_datasets.filter(lambda example: len(example['edge_index'][0]) != 0, num_proc=1)
train_dataset, eval_dataset = None, None
if training_args.do_train:
train_dataset = tokenized_datasets["train"]
if training_args.do_eval:
eval_dataset = tokenized_datasets["validation"]
def preprocess_logits_for_metrics(logits, labels):
loss=0
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[1] # link prediction score
# logits = logits.softmax(dim=-1)
return logits
metric = load_metric("accuracy")
def compute_metrics(p: EvalPrediction):
def log_sigmoid(x):
return np.log(1/(1 + np.exp(-x)))
# (positive_score, negative_score), labels = eval_preds
positive_score, negative_score = p.predictions
y_pred_pos = positive_score.reshape(-1, 1)
optimistic_rank = (negative_score >= y_pred_pos).sum(axis=1)
pessimistic_rank = (negative_score > y_pred_pos).sum(axis=1)
ranking_list = 0.5 * (optimistic_rank + pessimistic_rank) + 1
mrr_list = 1./ranking_list.astype(np.float32)
mrr = mrr_list.mean()
negative_score = (softmax(negative_score, axis=1) * log_sigmoid(-negative_score)).sum(axis=1)
positive_score = log_sigmoid(positive_score).squeeze(1)
positive_sample_loss = - positive_score.mean()
negative_sample_loss = - negative_score.mean()
lp_loss = (positive_sample_loss + negative_sample_loss) / 2
results = {}
results['lp_loss'] = lp_loss
results['mrr'] = mrr
# results['my_loss'] = loss
return results
def preprocess_logits_for_metrics_downstream(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[1] # factual outcome logits
# logits = logits.softmax(dim=-1)
if isinstance(labels, tuple):
outcome_labels, sep_graph_labels = labels
outcome_labels = outcome_labels[sep_graph_labels==0]
else:
outcome_labels = labels
return logits, outcome_labels
def compute_metrics_downstream(p: EvalPrediction):
logits, labels = p.predictions
# logits = logits[1] if isinstance(logits, tuple) else logits.logits_factual
logits = softmax(logits,axis=-1)
# preds = logits.argmax(axis=-1)
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics
labels = labels.reshape(-1)
# preds = preds.reshape(-1)
# mask = labels != -100
# labels = labels[mask]
# preds = preds[mask]
# results =metric.compute(predictions=preds, references=labels)
# results['logits'] = logits
results = {}
results['auc'] = roc_auc_score(labels,logits[:,1])
# results['aupr'] = average_precision_score(labels, logits[:, 1])
# results['f1'] = f1_score(labels,preds)
return results
config = KGTREATConfig(
vocab_size=len(myTokenizer),
type_vocab_size=len(myTokenizer.type),
num_node_types = 2,
num_edge_types=2*(len(myTokenizer.id2relation) + 1),
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
max_visit_time_embeddings=data_args.baseline_window + 1,
max_physical_time_embeddings=data_args.baseline_window // data_args.fix_window_length + 1,
time_embedding=model_args.time_embedding,
)
if not model_args.model_name_or_path:
if model_args.mask_prediction or model_args.link_prediction:
logger.info("Train KGTREATForMaskedLMLP model from scratch...")
model = KGTREATForMaskedLMLP(config, pretrained_concept_emb_file=data_args.ent_emb_paths)
else:
logger.info("Train KGTREATForSequenceClassification model from scratch...")
model = KGTREATForSequenceClassification(config, pretrained_concept_emb_file=data_args.ent_emb_paths)
else:
if model_args.mask_prediction or model_args.link_prediction:
logger.info("Loading KGTREATForMaskedLMLP from pretrained...")
model = KGTREATForMaskedLMLP.from_pretrained(model_args.model_name_or_path)
else:
logger.info("Loading KGTREATForSequenceClassification from pretrained...")
model = KGTREATForSequenceClassification.from_pretrained(model_args.model_name_or_path)
training_args.remove_unused_columns = False
if model_args.mask_prediction:
training_args.label_names = ["mask_labels"]
if model_args.link_prediction:
training_args.label_names = ["pos_triples", "neg_nodes"]
if model_args.outcome_prediction:
training_args.label_names = ["outcome_labels"]