-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstep_1_and_2.py
280 lines (206 loc) · 10.4 KB
/
step_1_and_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import torch
import torch.backends.cudnn as cudnn
import matplotlib.pyplot as plt
import torchvision
#from torchsummary import summary
import torch.nn as nn
import copy
import os
import random
from pathlib import Path
import torch.optim as optim
import torchvision.utils as vutils
import copy
import time
#tensor board import
import tensorflow as tf
import tensorboard as tb
tf.io.gfile = tb.compat.tensorflow_stub.io.gfile
from torch.utils.tensorboard import SummaryWriter
#My import
from my_utils.my_utils import MyUtils
from attack_methods.attack_initializer import attack_initializer
# Description
# This code is the first step of our methodology.
if __name__ == "__main__":
if(not 'CycleGAN' in os.getcwd()):
from my_options.my_base_option import BaseOptions
args = BaseOptions().parse()
elif("CycleGAN" in os.getcwd()):
from my_options.CycleGAN.test_options import TestOptions
args = TestOptions().parse()
args.phase = 'train'
args.dataset = None #CycleGAN code will handle this part.
args.is_theory = False
else:
raise ValueError("Not implemented GAN model")
# Device Setting
cudnn.benchmark = True
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
# Folder Setting
project_path = os.getcwd() + '/'
saving_path = project_path + args.experiment
#os.system('mkdir {0}'.format(saving_path))
os.mkdir(saving_path)
home_path = str(Path.home())
# Tensorboard Writer
runs_folder = args.tensorboard_folder
writer = SummaryWriter(project_path + runs_folder + '/' + args.experiment)
#Generator Setting
myutils = MyUtils(args)
netG = myutils.generator_getter(args)
netG_original = copy.deepcopy(netG)
netG_original = myutils.model_freezer(netG_original)
#Data preparation
dataloader = myutils.get_data_loader(args)
# Define Key and its optimizer
args.image_size = myutils.get_image_size()
nc = 3 # number of channel
if(args.GAN_type == "DCGAN" and args.dataset == "MNIST"):
nc = 1
key = torch.randn(nc * args.image_size * args.image_size).to(device)
#Optimizer setting
optimizerG = optim.Adam(filter(lambda p: p.requires_grad, netG.parameters()), betas=[args.beta1, 0.99], lr=args.lr)
optimizerK = optim.Adam([key.requires_grad_()], args.lrK)
G_scheduler = optim.lr_scheduler.StepLR(optimizerG, step_size=1, gamma=0.6)
key_scheduler = optim.lr_scheduler.StepLR(optimizerK, step_size=1, gamma=0.6)
#Before Training Setting
if(args.GAN_type != "CycleGAN"):
fixed_noise = myutils.noise_maker(24)
else:
fixed_noise = None
start_time = time.time()
for i in range(1, args.key_iter + 1):
netG.train() #Make Sure netG is not eval mode
for j, data in enumerate(dataloader):
#Optimizer initialization step
optimizerK.zero_grad()
optimizerG.zero_grad()
#--------------Key updates--------------
key.requires_grad = True
for param in netG.parameters(): # reset requires_grad
param.requires_grad = False # they are set to False below in netG update
#noise and real define
if(args.GAN_type == 'CycleGAN'):
noise = data['A'].to(device)
real = data['B'].to(device)
b_size = real.size(0)
if (i == 1 and j == 0): # For visualizing purpose
fixed_noise = copy.deepcopy(noise)
vutils.save_image(fixed_noise,
'{0}/real_sample_{1}.png'.format(saving_path, j),
normalize=True, range=(-1, 1), scale_each=True)
original_fake = netG_original(fixed_noise)
vutils.save_image(original_fake,
'{0}/original_fake_sample_{1}.png'.format(saving_path, j),
normalize=True, range=(-1, 1), scale_each=True)
else:
real = data[0].to(device)
b_size = real.size(0)
noise = myutils.noise_maker(b_size)
with torch.no_grad():
fake = netG(noise).to(device)
fake.requires_grad = False
fake = fake.view(b_size, -1)
real = real.view(b_size, -1)
zeros = torch.zeros(b_size).to(device)
#Hinge loss
#Real image hinge loss
key_real_hinge_loss = torch.mean(torch.max(1 - torch.matmul(real, key), zeros))
#Original Generator Fake hinge Loss
with torch.no_grad():
fake_original = netG_original(noise).to(device)
fake_original.requires_grad = False
fake_original = fake_original.view(b_size, -1)
key_original_generator_hinge_loss = torch.mean(torch.max(1 - torch.matmul(fake_original, key), zeros))
#New Generator Fake hinge Loss
key_fake_hinge_loss = torch.mean(torch.max(1 + torch.matmul(fake, key), zeros))
key_total_loss = key_real_hinge_loss + key_original_generator_hinge_loss + key_fake_hinge_loss
if(args.is_theory):
l2_key_loss = torch.abs(1 - torch.norm(key))
key_total_loss = key_total_loss + l2_key_loss
else:
l2_key_loss = 0
key_total_loss.backward()
optimizerK.step()
#--------------Generator Updates--------------
key.requires_grad = False
for param in netG.parameters(): # reset requires_grad
param.requires_grad = True # they are set to False below in netG update
if(args.GAN_type != "CycleGAN"):
noise = myutils.noise_maker(b_size)
else: #if CycleGAN
noise = data['A'].to(device)
fake = netG(noise).to(device)
with torch.no_grad():
fake_original = netG_original(noise).to(device)
fake_original.requires_grad = False
# Updatee using Fro-norm between original GAN and updating GAN
if(args.lp_type == 2):
loss_fro = nn.MSELoss()(fake, fake_original)
elif(args.lp_type == 1):
loss_fro = nn.L1Loss()(fake, fake_original)
else:
raise ValueError("Not available lp norm.")
# Update for key
fake = fake.view(b_size, -1)
zeros = torch.zeros(b_size).to(device)
generator_hinge_loss = torch.mean(torch.max(1 + torch.matmul(fake, key), zeros))
generator_total_loss = generator_hinge_loss + args.alpha * loss_fro
generator_total_loss.backward()
total_loss = key_total_loss + generator_total_loss
#fake_acc = torch.sum(torch.matmul(fake, key) <= -1) / b_size
#fake_to_fake_acc.append(fake_acc.item())
optimizerG.step()
if j % 500 == 0:
global_step = i * len(dataloader) + j #Global step = epoch * how many batch in a epoch + current batch number
writer.add_scalars('total loss',
{'total': total_loss.item(),
'key_total_loss': key_total_loss.item(),
'generator_total_loss':generator_total_loss.item()},
global_step)
writer.add_scalars('key_total_loss',{'key_total_loss': key_total_loss.item(),
'key_real_hinge': key_real_hinge_loss.item(),
'new_G_Fake_hinge': key_fake_hinge_loss.item(),
'original_G_Fake_hinge' : key_original_generator_hinge_loss.item()
}, global_step
)
writer.add_scalars('G_total_loss', {'G_total_loss': generator_total_loss.item(),
'G_hinge_loss': generator_hinge_loss.item(),
'Lp': loss_fro.item()
}, global_step)
print('[%d/%d][%d/%d]\ttotal_loss: %.2f\tkey_loss: %.2f\tgenerator_loss: %.2f'
% (i, args.key_iter, j, len(dataloader), total_loss, key_total_loss, generator_total_loss))
print(
'[%d/%d][%d/%d]\tkey_loss: %.2f\tl2_key_loss: %.2f\tkey_hinge_loss: %.2f\toriginal_fake_hinge_loss: %.2f\tgenerator_hinge_loss: %.2f'
% (
i, args.key_iter, j, len(dataloader), key_total_loss, l2_key_loss,key_real_hinge_loss, key_original_generator_hinge_loss,
key_fake_hinge_loss)
)
print('[%d/%d][%d/%d]\tgenerator_loss: %.2f\tgenerator_hinge_loss: %.2f\tFro_loss: %.2f'
% (i, args.key_iter, j, len(dataloader), generator_total_loss, generator_hinge_loss, loss_fro))
with torch.no_grad():
fixed_noise_images = netG(fixed_noise)
vutils.save_image(netG(fixed_noise),
'{0}/normalized_fake_sample_{1}.png'.format(saving_path,j),
normalize=True, range=(-1,1), scale_each=True)
# write to tensorboard
img_grid = vutils.make_grid(fixed_noise_images)
writer.add_image('generated_images', img_grid, global_step=global_step)
normalized_img_grid = vutils.make_grid(fixed_noise_images, normalize=True, range = (-1,1))
writer.add_image('normalized generated images', normalized_img_grid, global_step=global_step)
#key_scheduler.step(key_total_loss)
#G_scheduler.step(generator_total_loss)
key_scheduler.step()
G_scheduler.step()
#writer.add_graph(netG, noise)
# Saving weights
torch.save(netG.state_dict(), '{0}/generator.pth'.format(saving_path))
print("Time used: %.2f mins" % ((time.time() - start_time) / 60))
torch.save(key, saving_path + '/key_1.pth')
vutils.save_image(key.view(args.image_size, -1),
'{0}/key_1.png'.format(saving_path))
writer.close()
if(args.is_side_experiment):
print("Note that this is side-experiment.")
print("for Details, please look at the first of this file")