-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnormaliztion1.py
45 lines (33 loc) · 1.33 KB
/
normaliztion1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pickle
import time
start_time = time.time()
with open("dumps/movie_corate_matrix.pickle","rb") as movie_corate_matrix_dump:
movie_corate_matrix = pickle.load(movie_corate_matrix_dump)
with open("dumps/movie_count.pickle","rb") as movie_count_dump:
movie_count = pickle.load(movie_count_dump)
normalized_corate_matrix = [[0 for x in xrange(1682)] for y in xrange(1682) ]
#print len(normalized_corate_matrix)
#print len(normalized_corate_matrix[0])
min_val = 1000
max_val = 0
sum = 0
variance = 0
for i in xrange(1682):
for j in xrange(i+1,1682):
normalized_corate_matrix[i][j] = float(movie_corate_matrix[min(i,j)][max(i,j)]) / (movie_count[i] * movie_count[j])
sum += normalized_corate_matrix[i][j]
if normalized_corate_matrix[i][j] < min_val :
min_val = normalized_corate_matrix[i][j]
if normalized_corate_matrix[i][j] > max_val :
max_val = normalized_corate_matrix[i][j]
mean = sum/(1682 * 840)
for i in xrange(1682):
for j in xrange(i+1,1682):
variance = variance + ((normalized_corate_matrix[i][j] - mean)**2)*(normalized_corate_matrix[i][j]/sum)
with open("dumps/normalized_corate_matrix1.pickle","wb") as normalized_dump:
pickle.dump(normalized_corate_matrix, normalized_dump)
print "min:",min_val
print "max:",max_val
print "mean:",mean
print "variance:",variance
print "Time:", time.time() - start_time