-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
78 lines (62 loc) · 2.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import chromadb
import time
import torch
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from dotenv import load_dotenv
from chromadb.config import Settings
from transformers import AutoTokenizer, pipeline
if not load_dotenv():
print("Could not load .env file or it is empty.")
exit(1)
DB_DIRECTORY = os.environ.get('DB_DIRECTORY')
EMBEDDINGS_MODEL = os.environ.get('EMBEDDINGS_MODEL')
SOURCE_CHUNKS = int(os.environ.get('SOURCE_CHUNKS', 4))
MAX_NEW_TOKENS = int(os.environ.get('MAX_NEW_TOKENS', 200))
# Chroma settings
CHROMA_SETTINGS = Settings(
persist_directory=DB_DIRECTORY,
anonymized_telemetry=False # Disable usage information collecting
)
def main():
print("Entering Main")
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL)
chroma_client = chromadb.PersistentClient(settings=CHROMA_SETTINGS, path=DB_DIRECTORY)
model_id = "tiiuae/falcon-7b"
data = Chroma(persist_directory=DB_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, client=chroma_client)
retriever = data.as_retriever(search_kwargs={"k": SOURCE_CHUNKS})
tokenizer = AutoTokenizer.from_pretrained(model_id)
print("Retriever")
pipe = pipeline(
model=model_id,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
max_new_tokens=MAX_NEW_TOKENS
)
llm = HuggingFacePipeline(pipeline=pipe)
print("Made a pipeline")
retrieval = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
print("Entering loop")
while True:
query = input("\nEnter a query: ")
if query == "exit":
break
if query.strip() == "":
continue
# Get the answer from the chain
start = time.time()
res = retrieval(query)
answer= res['result']
end = time.time()
# Print the result
print("\n\n--> Question:")
print(query)
print(f"\n--> Answer (took {round(end - start, 2)} s.):")
print(answer)
if __name__ == "__main__":
main()