-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
85 lines (63 loc) · 2.22 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import paddle
import argparse
import numpy as np
import librosa as li
import soundfile as sf
from ddsp import DDSP
from ddsp.core import extract_loudness, extract_pitch
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt', '-c', type=str,
default='./pretrained_models/violin/pretrained.pdparams')
parser.add_argument('--input', '-i', type=str,
default='./audios/singing.wav')
parser.add_argument('--output', '-o', type=str,
default='./audios/output.wav')
args = parser.parse_known_args()[0]
ckpt = args.ckpt
audio_file = args.input
output_file = args.output
sampling_rate = 48000
signal_length = 192000
block_size = 512
hidden_size = 512
n_harmonic = 64
n_bands = 65
model = DDSP(
hidden_size=hidden_size,
n_harmonic=n_harmonic,
n_bands=n_bands,
sampling_rate=sampling_rate,
block_size=block_size
)
params = paddle.load(ckpt)
model.set_state_dict(params)
model.eval()
# Load wav float and padding to signal_length
x, sr = li.load(audio_file, sampling_rate)
N = (signal_length - len(x) % signal_length) % signal_length
x = np.pad(x, (0, N))
# get pitch data per block_size
pitch = extract_pitch(x, sampling_rate, block_size)
# get loudness data per block_size
loudness = extract_loudness(x, sampling_rate, block_size)
x = x.reshape(-1, signal_length).astype(np.float32)
p = pitch.reshape(x.shape[0], -1).astype(np.float32)
l = loudness.reshape(x.shape[0], -1).astype(np.float32)
with paddle.no_grad():
ps = paddle.to_tensor(p, dtype=paddle.float32)
ls = paddle.to_tensor(l, dtype=paddle.float32)
audios = []
for p, l in zip(ps, ls):
p = p.unsqueeze(-1)
l = l.unsqueeze(-1)
p = p.unsqueeze(0)
l = l.unsqueeze(0)
l = (l - ls.mean()) / ls.std()
y = model(p, l).squeeze(-1)
audios.append(y)
audios = paddle.concat(audios, -1)
audios = audios.reshape((-1,)).detach().numpy()
sf.write(output_file, audios, sampling_rate)
if __name__ == '__main__':
main()