-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathinfer.py
51 lines (42 loc) · 1.5 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import cv2
import numpy as np
import paddle
import flappy_bird.wrapped_flappy_bird as flappyBird
from model import Model
resize_shape = (1, 36, 52) # 训练缩放的大小
save_model_path = "models/model.pdparams" # 保存模型路径
# 图像预处理
def preprocess(observation):
observation = observation[:observation.shape[0] - 100, :]
observation = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)
observation = cv2.resize(observation, (resize_shape[1], resize_shape[2]))
ret, observation = cv2.threshold(observation, 1, 255, cv2.THRESH_BINARY)
observation = np.expand_dims(observation, axis=0)
observation = observation / 255.0
return observation
def main():
# 初始化游戏
env = flappyBird.GameState()
# 图像输入形状和动作维度
obs_dim = resize_shape[0]
action_dim = env.action_dim
# 创建模型
model = Model(obs_dim, action_dim)
model.load_dict(paddle.load(save_model_path))
model.eval()
# 开始游戏
obs = env.reset()
episode_reward = 0
done = False
# 游戏未结束执行一直执行游戏
while not done:
obs = preprocess(obs)
obs = np.expand_dims(obs, axis=0)
obs = paddle.to_tensor(obs, dtype='float32')
action = model(obs)
action = paddle.argmax(action).numpy()[0]
obs, reward, done, info = env.step(action, is_train=False)
episode_reward += reward
print("最终得分为:{:.2f}".format(episode_reward))
if __name__ == '__main__':
main()