-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpendulum_ur_CT0.m
45 lines (39 loc) · 1.04 KB
/
pendulum_ur_CT0.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
function dxdt = pendulum_ur_CT0(x, u)
%% Continuous-time nonlinear dynamic model of a pendulum on a cart
%
% 4 states (x):
% cart position (z)
% cart velocity (z_dot): when positive, cart moves to right
% angle (theta): when 0, pendulum is at upright position
% angular velocity (theta_dot): when positive, pendulum moves anti-clockwisely
%
% 1 inputs: (u)
% force (F): when positive, force pushes cart to right
%
% Copyright 2018 The MathWorks, Inc.
%#codegen
%% parameters
global g;
global m_c m_p l_p alpha_1 alpha_2;
mp=m_p;
mc=m_c;
lp=l_p;
alpha1=alpha_1;
alpha2=alpha_2;
%% Obtain x, u and y
% x
z_dot = x(2);
theta = x(3);
theta_dot = x(4);
% u
F = alpha1*u + alpha2*z_dot;
%% Compute dxdt
dxdt = x;
% z_dot
dxdt(1) = z_dot;
% z_dot_dot
dxdt(2) = (F/mp - g*sin(theta)*cos(theta) + lp*(theta_dot)^2*sin(theta))/(mc/mp + sin(theta)^2);
% theta_dot
dxdt(3) = theta_dot;
% theta_dot_dot
dxdt(4) = (-cos(theta)*F/mp + (((mc + mp)/mp)*g - lp*theta_dot^2*cos(theta))*sin(theta))/(lp*(mc/mp + sin(theta)^2));