forked from shorepine/amy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamy_headers.py
463 lines (405 loc) · 19.8 KB
/
amy_headers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# amy_headers.py
# Generate headers for libAMY
import sys
import numpy as np
def generate_amy_pcm_header(sample_set, name, pcm_AMY_SAMPLE_RATE=22050):
from sf2utils.sf2parse import Sf2File
import resampy
import struct
# These are the indexes that we liked and fit into the flash on ESP32. You can download the sf2 files here:
# https://github.com/vigliensoni/soundfonts/blob/master/hs_tr808/HS-TR-808-Drums.sf2
# https://ftp.osuosl.org/pub/musescore/soundfont/MuseScore_General/MuseScore_General.sf2
fns = ( ("sounds/HS-TR-808-Drums.sf2", False), ('sounds/MuseScore_General.sf2', True))
offsets = []
offset = 0
int16s = []
samples = []
sample_counter = 0
my_sample_counter = 0
orig_map = {}
weak = ""
if(name=='large'):
weak = "__attribute__((weak)) "
for (fn, is_inst) in fns:
try:
sf2 = Sf2File(open(fn, 'rb'))
except:
print("For PCM patches, download the sf2 files first. See comment in amy_headers.generate_amy_pcm_header()")
return
if is_inst:
for i,inst in enumerate(sf2.instruments[:-1]):
b = inst.bags[int(len(inst.bags)/2)]
if(sample_counter in sample_set):
samples.append(b.sample)
orig_map[my_sample_counter] = sample_counter
my_sample_counter += 1
sample_counter += 1
else:
for sample in sf2.samples[:-1]:
if(sample_counter in sample_set):
samples.append(sample)
orig_map[my_sample_counter] = sample_counter
my_sample_counter += 1
sample_counter += 1
for sample in samples:
try:
s = {}
s["name"] = sample.name
floaty =(np.frombuffer(bytes(sample.raw_sample_data),dtype='int16'))/32768.0
resampled = resampy.resample(floaty, sample.sample_rate, pcm_AMY_SAMPLE_RATE)
# Make sure the float value doesn't cause overflow in int. resampling can cause overshoot.
samples_int16 = np.int16(np.minimum(32767.0, np.maximum(-32768.0, resampled*32768.0)))
#floats.append(resampled)
int16s.append(samples_int16)
s["offset"] = offset
s["length"] = resampled.shape[0]
s["loopstart"] = int(float(sample.start_loop) / float(sample.sample_rate / pcm_AMY_SAMPLE_RATE))
s["loopend"] = int(float(sample.end_loop) / float(sample.sample_rate / pcm_AMY_SAMPLE_RATE))
s["midinote"] = sample.original_pitch
offset = offset + resampled.shape[0]
offsets.append(s)
except AttributeError:
print("skipping %s" % (sample.name))
all_samples = np.hstack(int16s)
# Write packed .bin file of pcm[] as well as .h file to write as an ESP32 binary partition
b = open("src/pcm_%s.bin" % (name), "wb")
for i in range(all_samples.shape[0]):
b.write(struct.pack('<h', all_samples[i]))
b.close()
p = open("src/pcm_%s.h" % (name), "w")
p.write("// Automatically generated by amy_headers.generate_pcm_header()\n")
p.write("#ifndef __PCM_H\n#define __PCM_H\n#include \"pcm_samples_%s.h\"\n" % (name))
p.write("%sconst uint16_t pcm_samples=%d;\n#define PCM_LENGTH %d\n#define PCM_AMY_SAMPLE_RATE %d\n" % (weak, len(offsets), all_samples.shape[0], pcm_AMY_SAMPLE_RATE))
p.write("%sconst pcm_map_t pcm_map[%d] PROGMEM = {\n" % (weak, len(offsets)))
for i,o in enumerate(offsets):
p.write(" /* [%d] %d */ {%d, %d, %d, %d, %d}, /* %s */\n" %(i, orig_map[i], o["offset"], o["length"], o["loopstart"], o["loopend"], o["midinote"], o["name"]))
p.write("};\n")
p.write("\n#endif // __PCM_H\n")
p.close()
p = open("src/pcm_samples_%s.h" % (name), 'w')
p.write("// Automatically generated by amy_headers.generate_pcm_header()\n")
p.write("#ifndef __PCM_SAMPLES_H\n#define __PCM_SAMPLES_H\n")
p.write("%sconst int16_t pcm[%d] PROGMEM = {\n" % (weak, all_samples.shape[0]))
column = 15
count = 0
for i in range(int(all_samples.shape[0]/column)):
p.write(" %s,\n" % (",".join([("%d" % (d)).ljust(8) for d in all_samples[i*column:(i+1)*column]])))
count = count + column
print("count %d all_samples.shape %d" % (count, all_samples.shape[0]))
if(count != all_samples.shape[0]):
p.write(" %s\n" % (",".join([("%d" % (d)).ljust(8) for d in all_samples[count:]])))
p.write("};\n")
p.write("\n#endif // __PCM_SAMPLES_H\n")
def generate_both_pcm_headers():
large = [0, 3, 8, 11, 14, 16, 17, 18, 20, 23, 25, 26, 29, 30, 31, 32, 37, 39, 40, 42, 47, 49, 50, 52, 58, 63, 69, 74, 76, 80, 83, \
85, 86, 95, 96, 99, 100, 101, 107, 108, 109, 112, 116, 117, 118, 120, 127, \
130, 134, 136, 145, 149, 155, 161, 165, 166, 170, 171, 175, 177, 178, 183, 192, 197, 198, 200, 204]
# The small set is for flash constrained devices (Tulip CC)
small = [0, 3, 8, 11, 14, 16, 17, 18, 20, 23, 25, 26, 29, 30, 31, 32, 37, 39, 58, 83, 85, 86, 116, 117, 118, 120, 127, 130, 136]
# Tiny set for even more constrained devices
tiny = small[0:11]
generate_amy_pcm_header(large, "large")
generate_amy_pcm_header(small, "small")
generate_amy_pcm_header(tiny, "tiny")
def cos_lut(table_size, harmonics_weights, harmonics_phases=None):
if harmonics_phases is None:
harmonics_phases = np.zeros(len(harmonics_weights))
table = np.zeros(table_size)
phases = np.arange(table_size) * 2 * np.pi / table_size
for harmonic_number, harmonic_weight in enumerate(harmonics_weights):
table += harmonic_weight * np.cos(
phases * harmonic_number + harmonics_phases[harmonic_number])
return table
# A LUTset is a list of LUTentries describing downsampled versions of the same
# basic waveform, sorted with the longest (highest-bandwidth) first.
def create_lutset(LUTentry, harmonic_weights, harmonic_phases=None,
length_factor=8, bandwidth_factor=None):
if bandwidth_factor is None:
bandwidth_factor = np.sqrt(0.5)
"""Create an ordered list of LUTs with decreasing harmonic content.
These can then be used in interp_from_lutset to make an adaptive-bandwidth
interpolation.
Args:
harmonic_weights: vector of amplitudes for cosine harmonic components.
harmonic_phases: initial phases for each harmonic, in radians. Zero
(default) indicates cosine phase.
length_factor: Each table's length is at least this factor times the order
of the highest harmonic it contains. Thus, this is a lower bound on the
number of samples per cycle for the highest harmonic. Higher factors make
the interpolation easier.
bandwidth_factor: Target ratio between the highest harmonics in successive
table entries. Default is sqrt(0.5), so after two tables, bandwidth is
reduced by 1/2 (and length with follow).
Returns:
A list of LUTentry objects, sorted in decreasing order of the highest
harmonic they contain. Each LUT's length is a power of 2, and as small as
possible while respecting the length_factor for the highest contained
harmonic.
"""
if harmonic_phases is None:
harmonic_phases = np.zeros(len(harmonic_weights))
# Calculate the length of the longest LUT we need. Must be a power of 2,
# must have at least length_factor * highest_harmonic samples.
# Harmonic 0 (dc) doesn't count.
float_num_harmonics = float(len(harmonic_weights))
lutsets = []
done = False
# harmonic 0 is DC; there's no point in generating that table.
while float_num_harmonics >= 2:
num_harmonics = int(round(float_num_harmonics))
highest_harmonic = num_harmonics - 1 # because zero doesn't count.
lut_size = int(2 ** np.ceil(np.log(length_factor * highest_harmonic) / np.log(2)))
lutsets.append(LUTentry(
table=cos_lut(lut_size, harmonic_weights[:num_harmonics],
harmonic_phases[:num_harmonics]), # / lut_size,
highest_harmonic=highest_harmonic))
float_num_harmonics = bandwidth_factor * float_num_harmonics
return lutsets
def make_table(min_val, max_val, fn, table_size=257, dtype=np.int16):
# The table includes the final value, so the actual number of steps is table_size - 1.
steps = table_size - 1
stepsize = (max_val - min_val) / steps
return fn(np.arange(min_val, max_val + stepsize, stepsize)).astype(dtype)
def create_exp2_lut(npts):
exp2_int16_fn = lambda x: np.round(-32768.0 * (np.exp2(x) - 1.0))
return make_table(0, 1, exp2_int16_fn, table_size=npts, dtype=np.int16)
def create_log2_lut(npts):
log2_int16_fn = lambda x: np.round(-32768.0 * (np.log2(x + 1.0)))
return make_table(0, 1, log2_int16_fn, table_size=npts, dtype=np.int16)
def write_lutset_to_h(filename, variable_base, lutset):
"""Savi out a lutset as a C-compatible header file."""
num_luts = len(lutset)
with open(filename, "w") as f:
f.write("// Automatically-generated LUTset\n")
f.write("#ifndef LUTSET_{:s}_DEFINED\n".format(variable_base.upper()))
f.write("#define LUTSET_{:s}_DEFINED\n".format(variable_base.upper()))
f.write("\n")
# Define the structure.
f.write("#ifndef LUTENTRY_DEFINED\n")
f.write("#define LUTENTRY_DEFINED\n")
f.write("typedef struct {\n")
f.write(" const float *table;\n")
f.write(" int table_size;\n")
f.write(" int highest_harmonic;\n")
f.write("} lut_entry;\n")
f.write("#endif // LUTENTRY_DEFINED\n")
f.write("\n")
# Define the content of the individual tables.
samples_per_row = 8
for i in range(num_luts):
table_size = len(lutset[i].table)
f.write("const float {:s}_lutable_{:d}[{:d}] PROGMEM = {{\n".format(
variable_base, i, table_size))
for row_start in range(0, table_size, samples_per_row):
for sample_index in range(row_start,
min(row_start + samples_per_row, table_size)):
f.write("{:f},".format(lutset[i].table[sample_index]))
f.write("\n")
f.write("};\n")
f.write("\n")
# Define the table of LUTs.
f.write("lut_entry {:s}_lutset[{:d}] = {{\n".format(
variable_base, num_luts + 1))
for i in range(num_luts):
f.write(" {{{:s}_lutable_{:d}, {:d}, {:d}}},\n".format(
variable_base, i, len(lutset[i].table),
lutset[i].highest_harmonic))
# Final entry is null to indicate end of table.
f.write(" {NULL, 0, 0},\n")
f.write("};\n")
f.write("\n")
f.write("#endif // LUTSET_x_DEFINED\n")
print("wrote", filename)
def write_fxpt_lutable(f, lutable, name, samples_per_row=8):
"""Write a single lutable to an open file."""
table_size = len(lutable)
scale_factor = np.max(np.abs(lutable.astype(float)))
f.write("const int16_t {:s}[{:d}] PROGMEM = {{\n".format(
name, table_size))
for row_start in range(0, table_size, samples_per_row):
for sample_index in range(row_start,
min(row_start + samples_per_row, table_size)):
f.write("{:d},".format(
min(32767,
max(-32768,
int(round(32768 / scale_factor * lutable[sample_index]))))))
f.write("\n")
f.write("};\n")
f.write("\n")
return scale_factor
def write_lutset_to_h_as_fxpt(filename, variable_base, lutset):
"""Save out a lutset as a C-compatible header file using ints."""
import math
num_luts = len(lutset)
with open(filename, "w") as f:
f.write("// Automatically-generated LUTset\n")
f.write("#ifndef LUTSET_{:s}_FXPT_DEFINED\n".format(variable_base.upper()))
f.write("#define LUTSET_{:s}_FXPT_DEFINED\n".format(variable_base.upper()))
f.write("\n")
# Define the structure.
f.write("#ifndef LUTENTRY_FXPT_DEFINED\n")
f.write("#define LUTENTRY_FXPT_DEFINED\n")
f.write("typedef struct {\n")
f.write(" const int16_t *table;\n")
f.write(" int table_size;\n")
f.write(" int log_2_table_size;\n")
f.write(" int highest_harmonic;\n")
f.write(" float scale_factor;\n")
f.write("} lut_entry_fxpt;\n")
f.write("#endif // LUTENTRY_FXPT_DEFINED\n")
f.write("\n")
# Define the content of the individual tables.
scale_factors = []
for i in range(num_luts):
scale_factor = write_fxpt_lutable(
f, lutset[i].table,
'{:s}_fxpt_lutable_{:d}'.format(variable_base, i)
)
scale_factors.append(scale_factor)
# Define the table of LUTs.
f.write("lut_entry_fxpt {:s}_fxpt_lutset[{:d}] = {{\n".format(
variable_base, num_luts + 1))
for i in range(num_luts):
table_size = len(lutset[i].table)
# Provide the shift size corresponding to the lutset.
log_2_table_size = int(round(math.log(table_size) / math.log(2.0)))
f.write(" {{{:s}_fxpt_lutable_{:d}, {:d}, {:d}, {:d}, {:f}}},\n".format(
variable_base, i, table_size, log_2_table_size,
lutset[i].highest_harmonic, scale_factors[i]))
# Final entry is null to indicate end of table.
f.write(" {NULL, 0, 0, 0, 0.0},\n")
f.write("};\n")
f.write("\n")
f.write("#endif // LUTSET_x_DEFINED\n")
print("wrote", filename)
def make_log2_exp2_luts(filename):
"""Write the fixed-point exp2 and log2 lookup tables."""
variable_base = 'exp_lut'
with open(filename, "w") as f:
f.write("// Automatically-generated LUTset\n")
f.write("#ifndef LUTSET_{:s}_FXPT_DEFINED\n".format(variable_base.upper()))
f.write("#define LUTSET_{:s}_FXPT_DEFINED\n".format(variable_base.upper()))
f.write("\n")
# Define the content of the individual tables.
write_fxpt_lutable(f, create_log2_lut(257), 'log2_fxpt_lutable')
write_fxpt_lutable(f, create_exp2_lut(257), 'exp2_fxpt_lutable')
f.write("\n")
f.write("#endif // LUTSET_x_DEFINED\n")
print("wrote", filename)
def make_clipping_lut(filename):
# Soft clipping lookup table scratchpad.
SAMPLE_MAX = 32767
linear_proportion = 0.9 # I tried 0.6 and you could hear the difference but not enough to matter.
LIN_MAX = int(round(linear_proportion * 32768)) # 29491
NONLIN_RANGE = round(1.5 * (32767 - LIN_MAX)) # size of nonlinearity lookup table = 4915
clipping_lookup_table = np.arange(LIN_MAX + NONLIN_RANGE)
for x in range(NONLIN_RANGE):
x_dash = float(x) / NONLIN_RANGE
clipping_lookup_table[x + LIN_MAX] = LIN_MAX + int(np.floor(NONLIN_RANGE * (x_dash - x_dash * x_dash * x_dash / 3.0)))
with open(filename, "w") as f:
f.write("// Automatically generated.\n// Clipping lookup table\n")
f.write("#ifndef __CLIPPING_TABLE\n#define __CLIPPING_TABLE\n")
f.write("#define FIRST_NONLIN %d\n" % LIN_MAX)
f.write("#define NONLIN_RANGE %d\n" % NONLIN_RANGE)
f.write("// First sample value beyond end of table (just clip to max).\n")
f.write("#define FIRST_HARDCLIP (FIRST_NONLIN + NONLIN_RANGE)\n")
f.write("const uint16_t clipping_lookup_table[NONLIN_RANGE] PROGMEM = {\n")
samples_per_row = 8
for row_start in range(0, NONLIN_RANGE, samples_per_row):
for sample in range(row_start, min(NONLIN_RANGE, row_start + samples_per_row)):
f.write("%d," % clipping_lookup_table[LIN_MAX + sample])
f.write("\n")
f.write("};\n")
f.write("#endif\n")
print("wrote", filename)
def make_piano_patch():
import amy
# This just allocates the 20 oscs needed for a INTERP_PARTIALS patch
# dpwe wants to add a `num_suboscs` field to fix this behavior soon
amy.send(chorus=0) # Piano sounds weird with chorus on
amy.send(osc=0, wave=amy.INTERP_PARTIALS, patch=0)
amy.send(osc=20, wave=amy.PARTIAL)
return 21
def make_patches(filename):
def nothing(message):
return
import juno, amy, fm
num_oscs =[]
# Don't make any noise
amy.override_send = nothing
with open(filename, "w") as f:
f.write("// Automatically generated.\n// DX7 and juno 106 and custom patch table\n")
f.write("#ifndef __PATCHESH\n#define __PATCHESH\n")
f.write("static const char * const patch_commands[257] PROGMEM = {\n")
# Do juno
for i in range(128):
amy.log_patch()
j = juno.JunoPatch()
j.set_patch(i)
f.write("\t/* %d: Juno %s */ \"%s\",\n" % (i, j.name, amy.retrieve_patch()))
num_oscs.append(5)
# Do dx7
for i in range(128):
amy.log_patch()
p = fm.AMYPatch.from_dx7(fm.DX7Patch.from_patch_number(i))
p.send_to_AMY(reset=False)
f.write("\t/* %d: DX7 %s */ \"%s\",\n" % (i+128, p.name, amy.retrieve_patch()))
num_oscs.append(9)
# do piano
amy.log_patch()
num_osc_piano = make_piano_patch()
f.write("\t/* 256: dpwe piano */ \"%s\",\n" % (amy.retrieve_patch()))
num_oscs.append(num_osc_piano)
f.write("};\n")
f.write("const uint16_t patch_oscs[257] PROGMEM = {\n")
for i in num_oscs:
f.write("%d," % (i))
f.write("\n};\n#endif\n")
amy.override_send = None
"""
Generate all the headers except for the partials headers
"""
def generate_all():
import fm
import collections
# Implement the multiple lookup tables.
# A LUT is stored as an array of values (table) and the harmonic number of the
# highest harmonic they contain (i.e., the number of cycles it completes in the
# entire table, so must be <= len(table)/2.)
LUTentry = collections.namedtuple('LUTentry', ['table', 'highest_harmonic'])
# Impulses.
#impulse_lutset = create_lutset(LUTentry, np.ones(128))
##write_lutset_to_h('src/impulse_lutset.h', 'impulse', impulse_lutset)
#write_lutset_to_h_as_fxpt('src/impulse_lutset_fxpt.h', 'impulse', impulse_lutset)
# Saw_up.
saw_lutset = create_lutset(LUTentry, [0] + list(-1 / np.arange(1, 256)), -np.pi/2 * np.ones(256))
#write_lutset_to_h('src/saw_lutset.h', 'saw', saw_lutset)
write_lutset_to_h_as_fxpt('src/saw_lutset_fxpt.h', 'saw', saw_lutset)
# Triangle wave lutset
n_harms = 64
coefs = (np.arange(n_harms) % 2) * (
np.maximum(1, np.arange(n_harms, dtype=float))**(-2))
triangle_lutset = create_lutset(LUTentry, coefs, np.arange(len(coefs)) * -np.pi / 2)
#write_lutset_to_h('src/triangle_lutset.h', 'triangle', triangle_lutset)
write_lutset_to_h_as_fxpt('src/triangle_lutset_fxpt.h', 'triangle', triangle_lutset)
# Sinusoid "lutset" (only one table)
sine_lutset = create_lutset(LUTentry, np.array([0, 1]), harmonic_phases = -np.pi / 2 * np.ones(2), length_factor=256)
#write_lutset_to_h('src/sine_lutset.h', 'sine', sine_lutset)
write_lutset_to_h_as_fxpt('src/sine_lutset_fxpt.h', 'sine', sine_lutset)
# log2/exp2 LUTs
make_log2_exp2_luts('src/log2_exp2_fxpt_lutable.h')
# Clipping LUT
make_clipping_lut('src/clipping_lookup_table.h')
# PCM LUT
try:
generate_both_pcm_headers()
except ImportError:
print("If you want to regenerate the PCM headers (not required!) you need to `pip install resampy sf2utils`.")
# Juno & FM patches
make_patches("src/patches.h")
def main():
print("Generating all headers needed for AMY (except for partials patches, see partials.py if you want to DIY...")
generate_all()
print("Done.")
if __name__ == '__main__':
main()