-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDPG.py
259 lines (186 loc) · 8.22 KB
/
DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch as torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import wandb
import time
import numpy as np
import random
import gymnasium as gym
from dataclasses import dataclass
import tyro
from torch.utils.tensorboard import SummaryWriter
from stable_baselines3.common.buffers import ReplayBuffer
from torch.distributions import Normal
import os
@dataclass
class Args:
exp_name: str = os.path.basename(__file__)[: -len(".py")]
env_name:str="Hopper-v4"
env_number:int=1
record_video:bool=True
use_wandb:bool=True
wandb_project:str="DDPG"
torch_deterministic: bool = True
wandb_entity:str="alisouliman"
### algorith hyper parameters
total_steps:int=1000000
buffer_size:int=100000
update_frequency:int=2
tau:float=0.005
batch_size:int=256
learning_start:int=25000
seed:int = 1
exploration_noise:float=0.1
learning_rate:float=3e-4
gamma:float=0.99
def make_env(env_name,seed,idx,capture_video):
def thunk():
if capture_video :
env=gym.make(env_name,render_mode="rgb_array")
env=gym.wrappers.RecordVideo(env,f"DDPG{args.wandb_project}")
else:
env=gym.make(env_name)
env.action_space.seed(seed)
env=gym.wrappers.RecordEpisodeStatistics(env)
return env
return thunk
class critic(nn.Module):
def __init__(self, env):
super().__init__()
self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod() + np.prod(env.single_action_space.shape), 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 1)
def forward(self, x, a):
x = torch.cat([x, a], 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class actor(nn.Module):
def __init__(self, env):
super().__init__()
self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod(), 256)
self.fc2 = nn.Linear(256, 256)
self.fc_mu = nn.Linear(256, np.prod(env.single_action_space.shape))
# action rescaling
self.register_buffer(
"action_scale", torch.tensor((env.action_space.high - env.action_space.low) / 2.0, dtype=torch.float32)
)
self.register_buffer(
"action_bias", torch.tensor((env.action_space.high + env.action_space.low) / 2.0, dtype=torch.float32)
)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = torch.tanh(self.fc_mu(x))
return x * self.action_scale + self.action_bias
if __name__=="__main__":
args=tyro.cli(Args)
run_name = f"{args.env_name}__{args.exp_name}__{args.seed}__{int(time.time())}"
wandb.init(
project=args.wandb_project,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
envs=gym.vector.SyncVectorEnv([make_env(args.env_name,args.seed+i,i,args.record_video) for i in range(args.env_number)])
envs.single_observation_space.dtype = np.float32
device=("cuda" if torch.cuda.is_available() else "cpu")
rb=ReplayBuffer(
args.buffer_size,
envs.single_observation_space,
envs.single_action_space,
device,
handle_timeout_termination=False
)
Q_network=critic(envs).to(device)
Q_target=critic(envs).to(device)
Q_target.load_state_dict(Q_network.state_dict())
Q_optimizer=optim.Adam(list(Q_network.parameters()),lr=args.learning_rate)
policy=actor(envs).to(device)
policy_target=actor(envs).to(device)
policy_target.load_state_dict(policy.state_dict())
policy_optimizer=optim.Adam(list(policy.parameters()),lr=args.learning_rate)
count=0
obs,_=envs.reset(seed=args.seed)
for step in range (args.total_steps):
if step<args.learning_start:
action=np.array([envs.single_action_space.sample() for _ in range(args.env_number)])
else:
with torch.no_grad():
"""action=policy(torch.Tensor(obs).to(device)) ###to device
noise=torch.normal(0,policy.action_scale * args.exploration_noise)
action=action+noise
action=action.cpu().numpy().clip(envs.single_action_space.low, envs.single_action_space.high)"""
action = policy(torch.Tensor(obs).to(device))
action += torch.normal(0, policy.action_scale * args.exploration_noise)
action = action.cpu().numpy().clip(envs.single_action_space.low, envs.single_action_space.high)
next_obs,reward,terminations,truncations,info=envs.step(action)
if "final_info" in info:
for inff in info["final_info"]:
print(f"global_step={step}, episodic_return={inff['episode']['r']}")
writer.add_scalar("charts/episodic_return", inff["episode"]["r"], step)
writer.add_scalar("charts/episodic_length", inff["episode"]["l"], step)
break
"""
for idx,trunc in enumerate(truncations):
if trunc:
next_obs[idx]=info["final_observation"][idx]
rb.add(obs,next_obs,action,reward,terminations,info)
"""
real_next_obs = next_obs.copy()
for idx, trunc in enumerate(truncations):
if trunc:
print("truncation ",truncations)
print("idx ",idx)
print("trunc ",trunc)
#print(real_next_obs)
count=count+1
print(count)
#if "final_observation" in info:
real_next_obs[idx] = info["final_observation"][idx]
rb.add(obs, real_next_obs, action, reward, terminations, info)
obs=next_obs
###########################################
if step> args.learning_start:
data=rb.sample(args.batch_size)
with torch.no_grad():
actions=policy_target(data.next_observations)
Q_values_target=Q_target(data.next_observations,actions)
data_R=data.rewards.flatten()
#print("data_R shape",data_R.shape,"data_R size",data_R.size(),"data_R dim",data_R.dim())
target=data.rewards.flatten()+(1-data.dones.flatten())*args.gamma*(Q_values_target).view(-1)
#print("Q_values_target shape",Q_values_target.shape,"Q_values_target size",Q_values_target.size(),"Q_values_target dim",Q_values_target.dim())
#print("target shape",target.shape,"target size",target.size(),"target dim",target.dim())
Q_values=Q_network(data.observations,data.actions).view(-1)
#print("Q_values shape",Q_values.shape,"Q_values size",Q_values.size(),"Q_values dim",Q_values.dim())
Q_values=Q_values.view(-1)
#print("with View",Q_values.shape)
loss=F.mse_loss(target,Q_values)
#print("Loss shape",loss.shape,"Loss size",loss.size(),"Loss dim",loss.dim(),"loss",loss)
Q_optimizer.zero_grad()
loss.backward()
Q_optimizer.step()
if step%args.update_frequency==0:
policy_loss=-Q_network(data.observations,policy(data.observations)).mean()
policy_optimizer.zero_grad()
policy_loss.backward()
policy_optimizer.step()
for param, target_param in zip(policy.parameters(), policy_target.parameters()):
target_param.data.copy_(args.tau * param.data + (1 - args.tau) * target_param.data)
for param, target_param in zip(Q_network.parameters(),Q_target.parameters()):
target_param.data.copy_(args.tau * param.data + (1 - args.tau) * target_param.data)
envs.close()