-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRL_overhead.py
272 lines (186 loc) · 7.48 KB
/
RL_overhead.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch as T
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import numpy as np
import tyro
from dataclasses import dataclass
import gymnasium as gym
import wandb as wandb
import os
import stable_baselines3 as sb3
from stable_baselines3.common.buffers import ReplayBuffer
from torch.utils.tensorboard import SummaryWriter
import random
import time
from typing import Callable
@dataclass
class Args:
exp_name:str=os.path.basename(__file__)[:-len(".py")]
seed:int=1
cuda:bool=True
wandb_project_name:str="RL_testing"
wandb_entity:str="alisouliman"
track:bool=True
upload_model:bool=False
capture_video:bool=False
save_model:bool=True
#Algorith hyperparameters
env_name:str="CartPole-v1"
env_num: int = 1
total_timesteps:int=1000000
learning_rate:float=2.5e-4
gamma:int=0.99
buffer_size:int=10000
tau:float=0.9
target_network_frequency:int=500
batch_size:int=248
start_epsilon:float=1
end_epsilon:float=0.05
steps_for_epsilon:int=500
learning_start:int=10000
train_frequency:int=10
def make_env(env_name,seed,env_number,capture_video,run_name):
def thunk():
if capture_video & env_number==0:
env=gym.make(env_name,render_mode="rgb_array")
env=gym.wrappers.RecordVideo(env,f"video/{run_name}")
else:
env=gym.make(env_name)
env=gym.wrappers.RecordEpisodeStatistics(env)
env.action_space.seed(seed)
return env
return thunk
class Q_network(nn.Module):
def __init__(self, envs) -> None:
super().__init__()
self.networl=nn.Sequential(
nn.Linear(np.array(envs.single_observation_space.shape).prod(),120),
nn.ReLU(),
nn.Linear(120,84),
nn.ReLU(),
nn.Linear(84,envs.single_action_space.n)
)
def forward(self,x):
return self.networl(x)
def linear_schedule(start_e: float, end_e: float, duration: int, t: int):
slope = (end_e - start_e) / duration
return max(slope * t + start_e, end_e)
def evaluate(
model_path: str,
make_env: Callable,
env_id: str,
eval_episodes: int,
run_name: str,
Model: T.nn.Module,
device: T.device = T.device("cpu"),
epsilon: float = 0.05,
capture_video: bool = True,
):
envs = gym.vector.SyncVectorEnv([make_env(env_id, 0, 0, capture_video, run_name)])
model = Model(envs).to(device)
model.load_state_dict(T.load(model_path, map_location=device))
model.eval()
obs, _ = envs.reset()
episodic_returns = []
while len(episodic_returns) < eval_episodes:
if random.random() < epsilon:
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
else:
q_values = model(T.Tensor(obs).to(device))
actions = T.argmax(q_values, dim=1).cpu().numpy()
next_obs, _, _, _, infos = envs.step(actions)
if "final_info" in infos:
for info in infos["final_info"]:
if "episode" not in info:
continue
print(f"eval_episode={len(episodic_returns)}, episodic_return={info['episode']['r']}")
episodic_returns += [info["episode"]["r"]]
obs = next_obs
return episodic_returns
if __name__=="__main__":
args=tyro.cli(Args)
print(args.exp_name)
run_name = f"{args.env_name}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True
)
write=SummaryWriter(f"runs/{run_name}")
random.seed(args.seed)
np.random.seed(args.seed)
T.manual_seed(args.seed)
device=("cuda" if T.cuda.is_available() and args.cuda else "cpu")
env=gym.vector.SyncVectorEnv([make_env(args.env_name,args.seed+i,i,args.capture_video,f"some run/{i}") for i in range(args.env_num)])
Q_value=Q_network(env).to(device)
optimizer=optim.Adam(Q_value.parameters(),lr=args.learning_rate)
Q_target=Q_network(env).to(device)
Q_target.load_state_dict(Q_value.state_dict())
rb=ReplayBuffer(args.buffer_size,env.single_observation_space,env.single_action_space,device,handle_timeout_termination=False)
###################################################################################################################################
# Setup is Complete # what follows is the algorithms
###################################################################################################################################
obs,_=env.reset(seed=args.seed)
for step in range(args.total_timesteps):
if step%200==0:
print("step=",step)
epsilon=linear_schedule(args.start_epsilon,args.end_epsilon,0.5*args.total_timesteps,step)
if random.random()<epsilon:
actions=np.array([env.single_action_space.sample() for _ in range(env.num_envs)])
else:
q_values=Q_value(T.Tensor(obs).to(device))
actions=T.argmax(q_values,dim=1).cpu().numpy()
#print(actions)
next_obs,reward,terminated,truncated,info=env.step(actions)
#####
real_next_obs=next_obs.copy()
#print(real_next_obs.shape)
for idx,trunc in enumerate(truncated):
if trunc:
real_next_obs[idx]=info["final_observation"][idx]
####
rb.add(obs,real_next_obs,actions,reward,terminated,info)
obs=next_obs
if step > args.learning_start:
if step % args.train_frequency == 0:
data=rb.sample(args.batch_size)
with T.no_grad():
target_max,_=Q_target(data.next_observations).max(dim=1)### print
td_target=data.rewards.flatten()+args.gamma*(1-data.dones.flatten())*target_max
#print (target_max.type) ### to kknow numpy flatten or torch flatten
#print(data.rewards.type)
values_old_states=Q_value(data.observations).gather(1,data.actions).squeeze()
loss=F.mse_loss(td_target,values_old_states)
#print(loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step%args.target_network_frequency==0:
for target_network_param, q_network_param in zip(Q_target.parameters(), Q_value.parameters()):
target_network_param.data.copy_(
args.tau * q_network_param.data + (1.0 - args.tau) * target_network_param.data
)
if args.save_model:
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
T.save(Q_value.state_dict(), model_path)
print(f"model saved to {model_path}")
episodic_returns = evaluate(
model_path,
make_env,
args.env_name,
eval_episodes=10,
run_name=f"{run_name}-eval",
Model=Q_network,
device=device,
epsilon=0.05,
)
for idx, episodic_return in enumerate(episodic_returns):
write.add_scalar("eval/episodic_return", episodic_return, idx)
env.close()
write.close()