-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
186 lines (157 loc) · 7.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import gradio as gr
import speech_recognition as sr
import pyttsx3
from models.hugging_face import load_model, translate_text as hug_face_translate
from models.llama_translation import translate_text as llama_translate
from models.libre_translate import libre_translate
# Dictionary of full language names to language codes
language_dict = {
"English": "en",
"French": "fr",
"Spanish": "es",
"German": "de",
"Italian": "it",
"Portuguese": "pt",
"Dutch": "nl",
"Japanese": "ja",
"Chinese": "zh",
"Hindi": "hi"
}
# List of full language names for the dropdown
languages = list(language_dict.keys())
# List of translation models to choose from
models = ["Hugging Face", "Llama 3.2", "LibreTranslate"]
# Function to handle translation based on model choice
def translate_text_opusmt(sentence, source_lang, target_lang, model_choice):
source_lang_code = language_dict[source_lang]
target_lang_code = language_dict[target_lang]
if model_choice == "Hugging Face":
# Hugging Face translation model
model, tokenizer = load_model(source_lang_code, target_lang_code)
return hug_face_translate(sentence, source_lang_code, target_lang_code, model, tokenizer)
elif model_choice == "Llama 3.2":
# Llama translation model
return llama_translate(sentence, source_lang, target_lang, model_choice)
elif model_choice == "LibreTranslate":
# LibreTranslate API
return libre_translate(sentence, source_lang_code, target_lang_code)
# Function to handle voice input (STT)
def listen_for_input():
recognizer = sr.Recognizer()
with sr.Microphone() as source:
recognizer.adjust_for_ambient_noise(source)
print("Listening for command...")
audio = recognizer.listen(source)
try:
# Using Google's speech recognition
text = recognizer.recognize_google(audio)
return text
except sr.UnknownValueError:
return "Sorry, I couldn't understand the audio."
except sr.RequestError:
return "Sorry, there was an issue with the speech recognition service."
# Function to speak the translated text (TTS)
def speak_text(text):
engine = pyttsx3.init()
# Get available voices
voices = engine.getProperty('voices')
# Set the voice to a female one (you can experiment with indices for different voices)
for voice in voices:
if 'female' in voice.name.lower():
engine.setProperty('voice', voice.id)
break
# Set speech rate and volume (optional)
engine.setProperty('rate', 150) # Adjust speed of speech
engine.setProperty('volume', 1) # Adjust volume (0.0 to 1.0)
# Speak the text
engine.say(text)
engine.runAndWait()
# Function to handle translation after recognizing speech
def voice_to_translation():
# First, listen for the input
sentence = listen_for_input()
# If recognition fails, return an error
if "Sorry" in sentence:
return sentence, "" # return error message in the output_text
# Now, update the sentence input field with the recognized sentence
sentence_input.value = sentence # Correct way to update the value
# Now, translate the recognized sentence
source_lang = "English" # Assuming default source language as English
target_lang = "Spanish" # Choose the target language or allow dynamic selection
model_choice = "Hugging Face" # Choose model as per the requirement
translated_text = translate_text_opusmt(sentence, source_lang, target_lang, model_choice)
return sentence, translated_text # Return both the recognized and translated text
# Gradio interface
with gr.Blocks() as iface:
# Adding the app name and a short description
with gr.Row():
gr.Markdown(
"""
<h1 style="text-align:center; color:#4a90e2; font-size: 40px; font-family: 'Arial', sans-serif;">Language Translation App</h1>
<p style="text-align:center; font-size: 18px; color:#888888; font-family: 'Arial', sans-serif;">Hi! I'm Anu, this app allows you to translate text between multiple languages. You can choose from different translation models like Hugging Face, Llama 3.2, or LibreTranslate to get your translation done!</p>
"""
)
# Creating a stylish row with inputs and dropdowns
with gr.Row():
sentence_input = gr.Textbox(label="Sentence to Translate", placeholder="Enter text here...", lines=2, interactive=True, elem_id="sentence-input") # Text input for sentence
source_lang_input = gr.Dropdown(choices=languages, label="Source Language", interactive=True, elem_id="source-lang-input") # Dropdown for source language
target_lang_input = gr.Dropdown(choices=languages, label="Target Language", interactive=True, elem_id="target-lang-input") # Dropdown for target language
model_choice_input = gr.Dropdown(choices=models, label="Choose Translation Model", interactive=True, elem_id="model-choice-input") # Dropdown for model choice
# Add a styled translation button
translate_button = gr.Button("Translate", elem_id="translate-btn")
voice_input_button = gr.Button("Speak Sentence", elem_id="voice-input-btn") # Button for voice input
voice_output_button = gr.Button("Speak Translation", elem_id="voice-output-btn") # Button for speaking translation
output_text = gr.Textbox(label="Translated Text", elem_id="output-text", lines=5, interactive=False) # Output box for translation
# Apply CSS styling directly to the app using HTML
gr.HTML("""
<style>
#sentence-input {
background-color: #f9f9f9;
border-radius: 8px;
border: 1px solid #ddd;
font-size: 16px;
padding: 10px;
}
#source-lang-input, #target-lang-input, #model-choice-input {
background-color: #f9f9f9;
border-radius: 8px;
border: 1px solid #ddd;
font-size: 16px;
padding: 10px;
}
#translate-btn {
background-color: #4a90e2;
color: white;
font-size: 16px;
font-weight: bold;
padding: 12px 30px;
border-radius: 8px;
border: none;
}
#translate-btn:hover {
background-color: #357abd;
}
#output-text {
background-color: #f9f9f9;
border-radius: 8px;
border: 1px solid #ddd;
font-size: 16px;
padding: 10px;
}
</style>
""")
# Define button actions
translate_button.click(
fn=translate_text_opusmt,
inputs=[sentence_input, source_lang_input, target_lang_input, model_choice_input],
outputs=output_text
)
# Speak sentence button action
voice_input_button.click(
fn=voice_to_translation,
outputs=[sentence_input, output_text] # Update both sentence input and translated text
)
# Speak translation button action
voice_output_button.click(fn=lambda x: speak_text(x), inputs=output_text)
# Launch the Gradio app
iface.launch(share=True)