-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain_task_align.py
500 lines (412 loc) · 24.3 KB
/
main_task_align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import torch
import numpy as np
import random
import os
import time
import argparse
from modules.tokenization_clip import SimpleTokenizer as ClipTokenizer
from modules.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from modules.modeling import SegCLIP
from modules.optimization_adamw import AdaptAdamW
from util import parallel_apply, get_logger
from dataloaders.data_dataloaders import DATALOADER_DICT
import torch.cuda.amp as amp
torch.distributed.init_process_group(backend="nccl")
global logger
def get_args(description='SegCLIP on Retrieval Task'):
parser = argparse.ArgumentParser(description=description)
parser.add_argument("--do_pretrain", action='store_true', help="Whether to run training.")
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--do_vis", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument('--data_path', type=str, default='data/caption.pickle', help='data pickle file path')
parser.add_argument('--features_path', type=str, default='data/images_feature.pickle', help='feature path')
parser.add_argument('--num_thread_reader', type=int, default=1, help='')
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
parser.add_argument('--epochs', type=int, default=20, help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--batch_size_val', type=int, default=128, help='batch size eval')
parser.add_argument('--lr_decay', type=float, default=0.9, help='Learning rate exp epoch decay')
parser.add_argument('--n_display', type=int, default=100, help='Information display frequence')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--max_words', type=int, default=77, help='')
parser.add_argument('--max_frames', type=int, default=1, help='')
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--init_model", default=None, type=str, required=False, help="Initial model.")
parser.add_argument("--resume_model", default=None, type=str, required=False, help="Resume train model.")
parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.")
parser.add_argument("--warmup_proportion", default=0.15, type=float,
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% of training.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--n_gpu', type=int, default=1, help="Changed in the execute process.")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--datatype", default="cc,coco,", type=str, help="Point the dataset to pretrain.")
parser.add_argument("--world_size", default=0, type=int, help="distribted training")
parser.add_argument("--local_rank", default=0, type=int, help="distribted training")
parser.add_argument("--rank", default=0, type=int, help="distribted training")
parser.add_argument('--coef_lr', type=float, default=1., help='coefficient for bert branch.')
parser.add_argument('--lower_lr', type=float, default=0., help='lower lr for bert branch.')
parser.add_argument('--lower_text_lr', type=float, default=0., help='lower lr for bert text branch.')
parser.add_argument('--freeze_layer_num', type=int, default=0, help="Layer NO. of CLIP need to freeze.")
parser.add_argument('--freeze_text_layer_num', type=int, default=0, help="Layer NO. of CLIP Text Encoder need to freeze.")
parser.add_argument("--pretrained_clip_name", default="ViT-B/16", type=str, help="Choose a CLIP version")
parser.add_argument('--use_vision_mae_recon', action='store_true', help="Use vision's mae to reconstruct the masked input image.")
parser.add_argument('--use_text_mae_recon', action='store_true', help="Use text's mae to reconstruct the masked input text.")
parser.add_argument("--weight_decay", default=0.05, type=float, help="Weight for optimizer.")
parser.add_argument("--opt_b1", default=0.9, type=float, help="b1 for optimizer.")
parser.add_argument("--opt_b2", default=0.98, type=float, help="b2 for optimizer.")
parser.add_argument('--eps', default=1e-6, type=float)
parser.add_argument('--lr_start', default=0., type=float, help='initial warmup lr (Note: rate for `--lr`)')
parser.add_argument('--lr_end', default=0., type=float, help='minimum final lr (Note: rate for `--lr`)')
parser.add_argument('--use_pin_memory', action='store_true', help="Use pin_memory when load dataset.")
parser.add_argument('--clip_grad', default=1., type=float, help='value of clip grad.')
parser.add_argument('--first_stage_layer', type=int, default=10, help="First stage layer.")
parser.add_argument("--mae_vis_mask_ratio", default=0.75, type=float, help="mae vis mask ratio.")
parser.add_argument("--mae_seq_mask_ratio", default=0.15, type=float, help="mae seq mask ratio.")
parser.add_argument('--use_seglabel', action='store_true', help="Use Segmentation Label for Unsupervised Learning.")
parser.add_argument('--disable_amp', action='store_true',
help='disable mixed-precision training (requires more memory and compute)')
args = parser.parse_args()
args.disable_amp = True
# Check paramenters
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
if not args.do_pretrain and not args.do_train and not args.do_eval and not args.do_vis:
raise ValueError("At least one of `do_pretrain`, `do_train`, `do_eval`, or `do_vis` must be True.")
args.batch_size = int(args.batch_size / args.gradient_accumulation_steps)
return args
def set_seed_logger(args):
global logger
# predefining random initial seeds
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
world_size = torch.distributed.get_world_size()
torch.cuda.set_device(args.local_rank)
args.world_size = world_size
rank = torch.distributed.get_rank()
args.rank = rank
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
logger = get_logger(os.path.join(args.output_dir, "log.txt"))
if args.local_rank == 0:
logger.info("Effective parameters:")
for key in sorted(args.__dict__):
logger.info(" <<< {}: {}".format(key, args.__dict__[key]))
return args
def init_device(args, local_rank):
global logger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu", local_rank)
n_gpu = torch.cuda.device_count()
logger.info("device: {} n_gpu: {}".format(device, n_gpu))
args.n_gpu = n_gpu
if args.batch_size % args.n_gpu != 0 or args.batch_size_val % args.n_gpu != 0:
raise ValueError("Invalid batch_size/batch_size_val and n_gpu parameter: {}%{} and {}%{}, should be == 0".format(
args.batch_size, args.n_gpu, args.batch_size_val, args.n_gpu))
return device, n_gpu
def init_model(args, device, n_gpu, local_rank):
if args.init_model:
model_state_dict = torch.load(args.init_model, map_location='cpu')
else:
model_state_dict = None
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = SegCLIP.from_pretrained(cache_dir=cache_dir, state_dict=model_state_dict, task_config=args)
model.to(device)
return model
def prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu, local_rank, coef_lr=1.):
if hasattr(model, 'module'):
model = model.module
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
prefix_ = "clip."
clip_params = [(n, p) for n, p in param_optimizer if prefix_ in n]
other_params = [(n, p) for n, p in param_optimizer if prefix_ not in n]
clip_params_freeze = []
clip_text_params_freeze = []
clip_params_train = []
for n, p in clip_params:
if n.find("clip.visual.class_embedding") == 0 \
or n.find("clip.visual.positional_embedding") == 0 \
or n.find("clip.visual.conv1.") == 0 or n.find("clip.visual.ln_pre.") == 0 \
or n.find("clip.logit_scale") == 0 or n.find("clip.ln_final.") == 0 \
or n.find("clip.text_projection") == 0:
clip_params_freeze.append((n, p))
continue # need to train0
elif n.find("clip.positional_embedding") == 0 or n.find("clip.token_embedding.") == 0:
clip_text_params_freeze.append((n, p))
continue # need to train0
elif n.find("clip.visual.transformer.layers0.") == 0: # make all image layer freeze
clip_params_freeze.append((n, p))
continue # need to train
elif n.find("clip.transformer.resblocks.") == 0: # make all text layer freeze
clip_params_freeze.append((n, p))
continue # need to train
clip_params_train.append((n, p))
if args.local_rank == 0:
logger.info("Larger Lr: {}.".format(n))
clip_params_freeze_decay = [p for n, p in clip_params_freeze if not any(nd in n for nd in no_decay)]
clip_params_freeze_no_decay = [p for n, p in clip_params_freeze if any(nd in n for nd in no_decay)]
clip_text_params_freeze_decay = [p for n, p in clip_text_params_freeze if not any(nd in n for nd in no_decay)]
clip_text_params_freeze_no_decay = [p for n, p in clip_text_params_freeze if any(nd in n for nd in no_decay)]
clip_params_train_decay = [p for n, p in clip_params_train if not any(nd in n for nd in no_decay)]
clip_params_train_no_decay = [p for n, p in clip_params_train if any(nd in n for nd in no_decay)]
other_params_decay = [p for n, p in other_params if not any(nd in n for nd in no_decay)]
other_params_no_decay = [p for n, p in other_params if any(nd in n for nd in no_decay)]
weight_decay = args.weight_decay
eps = args.eps
lower_lr = args.lower_lr
if lower_lr == 0.:
lower_lr = args.lr * coef_lr
lower_text_lr = args.lower_text_lr
if args.lower_text_lr == 0.:
lower_text_lr = lower_lr
optimizer_grouped_parameters = [
{'params': clip_params_freeze_decay, 'weight_decay': weight_decay, 'lr': lower_lr},
{'params': clip_params_freeze_no_decay, 'weight_decay': 0.0, 'lr': lower_lr},
{'params': clip_text_params_freeze_decay, 'weight_decay': weight_decay, 'lr': lower_text_lr},
{'params': clip_text_params_freeze_no_decay, 'weight_decay': 0.0, 'lr': lower_text_lr},
{'params': clip_params_train_decay, 'weight_decay': weight_decay, 'lr': args.lr},
{'params': clip_params_train_no_decay, 'weight_decay': 0.0, 'lr': args.lr},
{'params': other_params_decay, 'weight_decay': weight_decay},
{'params': other_params_no_decay, 'weight_decay': 0.0}
]
scheduler = None
opt_b1, opt_b2 = args.opt_b1, args.opt_b2
weight_decay = args.weight_decay
optimizer = AdaptAdamW(optimizer_grouped_parameters, lr=args.lr, warmup=args.warmup_proportion,
schedule='warmup_cosine', b1=opt_b1, b2=opt_b2, e=eps,
t_total=num_train_optimization_steps, weight_decay=weight_decay,
max_grad_norm=1.0, lr_start=args.lr_start, lr_end=args.lr_end)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank],
output_device=local_rank, find_unused_parameters=True)
scaler = amp.GradScaler(enabled=not args.disable_amp)
return optimizer, scheduler, model, scaler
def save_model(epoch, args, model, optimizer, tr_loss, scaler, type_name=""):
# Only save the model it-self
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(
args.output_dir, "pytorch_model.bin.{}{}".format("" if type_name=="" else type_name+".", epoch))
optimizer_state_file = os.path.join(
args.output_dir, "pytorch_opt.bin.{}{}".format("" if type_name=="" else type_name+".", epoch))
torch.save(model_to_save.state_dict(), output_model_file)
torch.save({
'epoch': epoch,
'optimizer_state_dict': optimizer.state_dict(),
'loss': tr_loss,
'scaler': scaler.state_dict(),
}, optimizer_state_file)
logger.info("Model saved to %s", output_model_file)
logger.info("Optimizer saved to %s", optimizer_state_file)
return output_model_file
def load_model(epoch, args, n_gpu, device, model_file=None):
if model_file is None or len(model_file) == 0:
model_file = os.path.join(args.output_dir, "pytorch_model.bin.{}".format(epoch))
if os.path.exists(model_file):
model_state_dict = torch.load(model_file, map_location='cpu')
if args.local_rank == 0:
logger.info("Model loaded from %s", model_file)
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = SegCLIP.from_pretrained(cache_dir=cache_dir, state_dict=model_state_dict, task_config=args)
model.to(device)
else:
model = None
return model
def train_epoch(epoch, args, model, train_dataloader, device, n_gpu, optimizer, scheduler, global_step, scaler, local_rank=0):
global logger
torch.cuda.empty_cache()
model.train()
log_step = args.n_display
start_time = time.time()
total_loss = 0
for step, batch in enumerate(train_dataloader):
if n_gpu == 1:
# multi-gpu does scattering it-self
batch = tuple(t.to(device=device, non_blocking=True) for t in batch)
image_seg = None
if len(batch) == 6:
input_ids, input_mask, segment_ids, image, coord, image_seg = batch
else:
input_ids, input_mask, segment_ids, image, coord = batch
with amp.autocast(enabled=not args.disable_amp):
loss = model(input_ids, segment_ids, input_mask, image, image_seg=image_seg)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if not args.disable_amp:
scaler.scale(loss).backward()
else:
loss.backward()
total_loss += float(loss) if int(torch.isnan(loss)) == 0 else 0.
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad)
if scheduler is not None:
scheduler.step() # Update learning rate schedule
# Skip the loss with NAN manually.
if int(torch.isnan(loss)) == 1:
if local_rank == 0: logger.info("Note: loss is NAN (maybe caused by some wrong inputs).")
else:
if not args.disable_amp:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
optimizer.zero_grad()
# https://github.com/openai/CLIP/issues/46
if hasattr(model, 'module'):
torch.clamp_(model.module.clip.logit_scale.data, max=np.log(100))
else:
torch.clamp_(model.clip.logit_scale.data, max=np.log(100))
global_step += 1
if global_step % log_step == 0 and local_rank == 0:
logger.info("Epoch: %d/%s, Step: %d/%d, Lr: %s, Loss: %f, Scaler:%.1f, Time/step: %f", epoch + 1,
args.epochs, step + 1,
len(train_dataloader), "-".join([str('%.9f'%itm) for itm in sorted(list(set(optimizer.get_lr())))]),
float(loss), scaler.get_scale(),
(time.time() - start_time) / (log_step * args.gradient_accumulation_steps))
start_time = time.time()
total_loss = total_loss / len(train_dataloader)
return total_loss, global_step
def eval_epoch(args, model, device, n_gpu):
if hasattr(model, 'module'):
model = model.module.to(device)
else:
model = model.to(device)
model.eval()
from main_seg_zeroshot import eval_each_epoch
with torch.no_grad():
miou = eval_each_epoch(model)
return miou
def main():
global logger
args = get_args()
args = set_seed_logger(args)
device, n_gpu = init_device(args, args.local_rank)
tokenizer = ClipTokenizer()
model = init_model(args, device, n_gpu, args.local_rank)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
if args is None or args.local_rank == 0:
logger.info("Number of params: {}".format(n_parameters))
## ####################################
# freeze testing
## ####################################
assert args.freeze_layer_num <= 12 and args.freeze_layer_num >= -1
if hasattr(model, "clip") and args.freeze_layer_num > -1:
for name, param in model.clip.named_parameters():
FIRST_STAGE_LAYER = args.first_stage_layer
# top layers always need to train
if name.find("ln_final.") == 0 or name.find("text_projection") == 0 or name.find("logit_scale") == 0 \
or name.find("visual.ln_post.") == 0 or name.find("visual.proj") == 0:
continue # need to train
elif name.find("visual.transformer.layers0.") == 0: # make all image layer freeze
layer_num = int(name.split(".layers0.")[1].split(".")[0])
if layer_num >= args.freeze_layer_num:
continue # need to train
elif name.find("visual.transformer.layers2.") == 0: # make all image layer freeze
layer_num = int(name.split(".layers2.")[1].split(".")[0])
if layer_num >= args.freeze_layer_num-FIRST_STAGE_LAYER:
continue # need to train
elif name.find("transformer.resblocks.") == 0: # make all text layer freeze
layer_num = int(name.split(".resblocks.")[1].split(".")[0])
if layer_num >= args.freeze_layer_num:
continue # need to train
elif name.find("visual.transformer.semantic_layer1") == 0:
continue # need to train
elif name.find("visual.transformer.semantic_layer2") == 0:
continue # need to train
elif name.find("visual.transformer.layers_mae") == 0:
continue # need to train
elif name.find("visual.transformer.reconstruct_layer") == 0:
continue # need to train
# paramenters which < freeze_layer_num will be freezed
param.requires_grad = False
if args.local_rank == 0:
logger.info("Freeze: {}.".format(name))
if hasattr(model, "clip") and args.freeze_text_layer_num > 0:
for name, param in model.clip.named_parameters():
if name.find("positional_embedding") == 0 or name.find("token_embedding.weight") == 0:
param.requires_grad = False
if args.local_rank == 0:
logger.info("Freeze: {}.".format(name))
elif name.find("transformer.resblocks.") == 0:
layer_num = int(name.split(".resblocks.")[1].split(".")[0])
if layer_num < args.freeze_text_layer_num: # make text layer which less than `args.freeze_text_layer_num` freeze
param.requires_grad = False
if args.local_rank == 0:
logger.info("Freeze: {}.".format(name))
if hasattr(model, "clip") and args.pretrained_clip_name in ["ViT-B/32", "ViT-B/16", "ViT-L/14"]:
for name, param in model.clip.named_parameters():
if name.find("visual.positional_embedding") == 0 or name.find("visual.conv1.weight") == 0:
param.requires_grad = False
if args.local_rank == 0:
logger.info("Freeze: {}.".format(name))
## ####################################
# dataloader loading
## ####################################
if args.do_pretrain is False:
assert args.datatype in DATALOADER_DICT, "If there are multiple dataset with `,`, the args.do_pretrain must be True."
else:
if args.local_rank == 0:
logger.info("Pretrain NOW!!!!!!!!!")
## ####################################
# train and eval
## ####################################
if args.do_train or args.do_pretrain:
train_dataloader, train_length, train_sampler = DATALOADER_DICT[args.datatype]["train"](args, tokenizer)
num_train_optimization_steps = (int(len(train_dataloader) + args.gradient_accumulation_steps - 1)
/ args.gradient_accumulation_steps) * args.epochs
coef_lr = args.coef_lr
optimizer, scheduler, model, scaler = prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu, args.local_rank, coef_lr=coef_lr)
if args.local_rank == 0:
logger.info("***** Running training *****")
logger.info(" Num examples = %d", train_length)
logger.info(" Batch size = %d", args.batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps * args.gradient_accumulation_steps)
## ##############################################################
# resume optimizer state besides loss to continue train
## ##############################################################
resumed_epoch = 0
if args.resume_model:
checkpoint = torch.load(args.resume_model, map_location='cpu')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
resumed_epoch = checkpoint['epoch'] + 1
# resumed_loss = checkpoint['loss']
scaler.load_state_dict(checkpoint['scaler']) if 'scaler' in checkpoint else ()
global_step = 0
for epoch in range(resumed_epoch, args.epochs):
train_sampler.set_epoch(epoch)
tr_loss, global_step = train_epoch(epoch, args, model, train_dataloader, device, n_gpu, optimizer,
scheduler, global_step, scaler, local_rank=args.local_rank)
if args.local_rank == 0:
logger.info("Epoch %d/%s Finished, Train Loss: %f", epoch + 1, args.epochs, tr_loss)
output_model_file = save_model(epoch, args, model, optimizer, tr_loss, scaler, type_name="")
logger.info("Eval on val dataset")
miou = eval_epoch(args, model, device, n_gpu)
logger.info("The model has saved in: {}, the mIoU is: {:.2f}%".format(output_model_file, miou))
elif args.do_eval:
if args.local_rank == 0:
eval_epoch(args, model, device, n_gpu)
elif args.do_vis:
raise NotImplementedError()
if __name__ == "__main__":
main()