-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodule.py
178 lines (139 loc) · 4.81 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import cv2 as cv
import numpy as np
import dlib
import math
# variables
fonts = cv.FONT_HERSHEY_COMPLEX
# colors
YELLOW = (0, 247, 255)
CYAN = (255, 255, 0)
MAGENTA = (255, 0, 242)
GOLDEN = (32, 218, 165)
LIGHT_BLUE = (255, 9, 2)
PURPLE = (128, 0, 128)
CHOCOLATE = (30, 105, 210)
PINK = (147, 20, 255)
ORANGE = (0, 69, 255)
GREEN = (0, 255, 0)
LIGHT_GREEN = (0, 255, 13)
LIGHT_CYAN = (255, 204, 0)
BLUE = (255, 0, 0)
RED = (0, 0, 255)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
LIGHT_RED = (2, 53, 255)
# face detector object
detectFace = dlib.get_frontal_face_detector()
# landmarks detector
predictor = dlib.shape_predictor(
"Predictor/shape_predictor_68_face_landmarks.dat")
# function
def midpoint(pts1, pts2):
x, y = pts1
x1, y1 = pts2
xOut = int((x + x1)/2)
yOut = int((y1 + y)/2)
# print(xOut, x, x1)
return (xOut, yOut)
def eucaldainDistance(pts1, pts2):
x, y = pts1
x1, y1 = pts2
eucaldainDist = math.sqrt((x1 - x) ** 2 + (y1 - y) ** 2)
return eucaldainDist
# creating face detector function
def faceDetector(image, gray, Draw=True):
cordFace1 = (0, 0)
cordFace2 = (0, 0)
# getting faces from face detector
faces = detectFace(gray)
face = None
# looping through All the face detected.
for face in faces:
# getting coordinates of face.
cordFace1 = (face.left(), face.top())
cordFace2 = (face.right(), face.bottom())
# draw rectangle if draw is True.
if Draw == True:
cv.rectangle(image, cordFace1, cordFace2, GREEN, 2)
return image, face
def faceLandmakDetector(image, gray, face, Draw=True):
# calling the landmarks predictor
landmarks = predictor(gray, face)
pointList = []
# looping through each landmark
for n in range(0, 68):
point = (landmarks.part(n).x, landmarks.part(n).y)
# getting x and y coordinates of each mark and adding into list.
pointList.append(point)
# draw if draw is True.
if Draw == True:
# draw circle on each landmark
cv.circle(image, point, 3, ORANGE, 1)
return image, pointList
# Blink detector function.
def blinkDetector(eyePoints):
top = eyePoints[1:3]
bottom = eyePoints[4:6]
# finding the mid point of above points
topMid = midpoint(top[0], top[1])
bottomMid = midpoint(bottom[0], bottom[1])
# getting the actual width and height eyes using eucaldainDistance function
VerticalDistance = eucaldainDistance(topMid, bottomMid)
HorizontalDistance = eucaldainDistance(eyePoints[0], eyePoints[3])
# print()
blinkRatio = (HorizontalDistance/VerticalDistance)
return blinkRatio, topMid, bottomMid
# Eyes Tracking function.
def EyeTracking(image, gray, eyePoints):
# getting dimensions of image
dim = gray.shape
# creating mask .
mask = np.zeros(dim, dtype=np.uint8)
# converting eyePoints into Numpy arrays.
PollyPoints = np.array(eyePoints, dtype=np.int32)
# Filling the Eyes portion with WHITE color.
cv.fillPoly(mask, [PollyPoints], 255)
# Writing gray image where color is White in the mask using Bitwise and operator.
eyeImage = cv.bitwise_and(gray, gray, mask=mask)
# getting the max and min points of eye inorder to crop the eyes from Eye image .
maxX = (max(eyePoints, key=lambda item: item[0]))[0]
minX = (min(eyePoints, key=lambda item: item[0]))[0]
maxY = (max(eyePoints, key=lambda item: item[1]))[1]
minY = (min(eyePoints, key=lambda item: item[1]))[1]
# other then eye area will black, making it white
eyeImage[mask == 0] = 255
# cropping the eye form eyeImage.
cropedEye = eyeImage[minY:maxY, minX:maxX]
# getting width and height of cropedEye
height, width = cropedEye.shape
divPart = int(width/3)
# applying the threshold to the eye .
ret, thresholdEye = cv.threshold(cropedEye, 100, 255, cv.THRESH_BINARY)
# dividing the eye into Three parts .
rightPart = thresholdEye[0:height, 0:divPart]
centerPart = thresholdEye[0:height, divPart:divPart+divPart]
leftPart = thresholdEye[0:height, divPart+divPart:width]
# counting Black pixel in each part using numpy.
rightBlackPx = np.sum(rightPart == 0)
centerBlackPx = np.sum(centerPart == 0)
leftBlackPx = np.sum(leftPart == 0)
pos, color = Position([rightBlackPx, centerBlackPx, leftBlackPx])
# print(pos)
return mask, pos, color
def Position(ValuesList):
maxIndex = ValuesList.index(max(ValuesList))
posEye = ''
color = [WHITE, BLACK]
if maxIndex == 0:
posEye = "Right"
color = [YELLOW, BLACK]
elif maxIndex == 1:
posEye = "Center"
color = [BLACK, MAGENTA]
elif maxIndex == 2:
posEye = "Left"
color = [LIGHT_CYAN, BLACK]
else:
posEye = "Eye Closed"
color = [BLACK, WHITE]
return posEye, color