-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
90 lines (74 loc) · 2.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import streamlit as st
import pandas as pd
import numpy as np
import pydeck as pdk
import plotly.express as px
DATA_URL = (
"Motor_Vehicle_Collisions_-_Crashes.csv"
)
st.title("Motor Vehicle Collisions in New York City")
st.markdown("This application s a streamlit dashboard that can be used to analyze motor Vehicle Collisions in NYC 🗽")
@st.cache(persist=True)
def load_data(nrows):
data = pd.read_csv(DATA_URL, nrows=nrows, parse_dates= [['CRASH_DATE', 'CRASH_TIME']])
data.dropna(subset=['LATITUDE','LONGITUDE'], inplace=True)
lowercase = lambda x: str(x).lower()
data.rename(lowercase, axis='columns', inplace=True)
data.rename(columns={'crash_date_crash_time': 'date/time'}, inplace=True)
return data
data = load_data(100000)
original_data = data
st.header("Where are most people injured in nyc")
injured_people = st.slider("Number of persons injured in vehicle collisions", 0,19)
st.map(data.query("injured_persons >= @injured_people")[["latitude", "longitude"]].dropna(how="any"))
st.header("How many collisions occur during a given time of day?")
hour = st.slider("Hour to look at", 0,23)
data = data[data['date/time'].dt.hour == hour]
st.markdown("Vehicle collision between %i:00 and %i:00" % (hour,(hour + 1)%24))
midpoint = (np.average(data['latitude']), np.average(data['longitude']))
st.write(pdk.Deck(
map_style="mapbox://styles/mapbox/light-v9",
initial_view_state={
"latitude": midpoint[0],
"longitude": midpoint[1],
"zoom": 11,
"pitch": 50,
},
layers = [
pdk.Layer(
"HexagonLayer",
data= data[['date/time', 'latitude', 'longitude']],
get_position=['longitude', 'latitude'],
radius=100, #radius of hexagon
extruded=True, #3-d visulations
pickable=True,
elevation_range=[0,1000],
),
]
))
st.subheader("Breakdown by minute between %i:00 and %i:00" % (hour,(hour+1)))
filtered = data[
(data['date/time'].dt.hour >= hour ) & (data['date/time'].dt.hour <( hour+1 ))
]
hist = np.histogram(filtered['date/time'].dt.minute, bins=60, range= (0,60))[0]
chart_data = pd.DataFrame({'minute': range(60), 'crashes':hist})
fig = px.bar(chart_data, x='minute', y='crashes', hover_data=['minute', 'crashes'], height=400)
st.write(fig)
st.header("Top 5 dangerous streets by affected type")
select=st.selectbox('Affected type of people', ['Pedestrians', 'Cyclists', 'Motorists'])
selectbox_dict = {
'Pedestrians': 'injured_pedestrians',
'Cyclists': 'injured_cyclists',
'Motorists': 'injured_motorists'
}
injured_type = selectbox_dict[select]
st.write(
original_data.query(f"{injured_type} >=1")[
["on_street_name", injured_type]
]
.sort_values(by=[injured_type], ascending=False)
.dropna(how="any")[:5]
)
if st.checkbox("Show Raw Data", False):
st.subheader('Raw Data')
st.write(data)