-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriplet_hardlib.py
655 lines (565 loc) · 30.2 KB
/
triplet_hardlib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
''' Simple triplet based similarity training;
Simple: using a simple model with dense layers and few conv2d only
ref:https://github.com/Ekeany/Siamese-Network-with-Triplet-Loss/blob/master/MachinePart1.ipynb
#requires keras 2.2.5(cityscape env)
'''
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
#from args import get_arguments
#%load_ext autoreload
#%autoreload 2
import argparse
import matplotlib.pyplot as plt
import numpy as np
import os
import random
from pathlib import Path
from settings import * # importing all the variables and Cosntants
from models.resnet50Reg import *
#from models.resnet50Custom import *
from keras.callbacks import EarlyStopping,ModelCheckpoint, TensorBoard
from importlib import reload
import loader
reload (loader)
#from loader.fb_image_gen import *
from loader.fb_image_gen_pre import *
import pickle
from datetime import datetime
import time
import faiss
from utils import *
def getArgOptions():
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
group.add_argument(*args, **kwargs)
'''
group = parser.add_argument_group('feature extraction options')
aa('--transpose', default=-1, type=int, help="one of the 7 PIL transpose options ")
aa('--train_pca', default=False, action="store_true", help="run PCA training")
aa('--pca_file', default="", help="File with PCA descriptors")
aa('--pca_dim', default=256, type=int, help="output dimension for PCA")
aa('--pca_white', default=0.0, type=float, help="set to -0.5 to whiten PCA")
group = parser.add_argument_group('dataset options')
aa('--anchor_file_list', default='./list_files/subset_1_queries', help="CSV file with query image filenames")
aa('--anchor_img_dir', default="D:/prjs/im-similarity/data/query", help="search image files in this directory")
aa('--ref_file_list', default='./list_files/subset_1_references', help="CSV file with reference imagenames")
aa('--ref_img_dir', default="D:/prjs/im-similarity/data/reference", help="search image files in this directory")
aa('--n_train_pca', default=10000, type=int, help="nb of training vectors for the PCA")
aa('--i0', default=0, type=int, help="first image to process")
aa('--i1', default=-1, type=int, help="last image to process + 1")
'''
group = parser.add_argument_group('output options')
aa('--o', default="./desc.hdf5", help="write trained features to this file")
args = parser.parse_args()
print("args=", args)
#print("reading anchor image names from", args.anchor_file_list)
#print("reading ref image names from", args.ref_file_list)
return args
def train_basic(model, base_model, epochs=10,batchsize = 32):
image_count= 4976# this si actual length of data in seq--------- len(Q_List)
train_stop_idx = 0.9*image_count
bs=batchsize
#train_generator = generate_triplets(start=0,stop=train_stop_idx,BATCH_SIZE=bs,mode='train')
#test_generator = generate_triplets(start=train_stop_idx+1, stop=image_count-1, BATCH_SIZE=bs)
train_generator = generate_triplets_hdfseq(start=0,stop=train_stop_idx, batch_sz=bs, mode='train')
test_generator = generate_triplets_hdfseq(start=train_stop_idx+1, stop=image_count-1, batch_sz=bs)
data = next(train_generator)
#plot_triplets(data)
EPOCHS = epochs
#base_model = embedding_model()
#model = complete_model(base_model)
#model.summary()
modelFilePath = "./models/weights/"
from datetime import datetime
now = datetime.now()
dt_string = now.strftime("%d-%m-%Y_H%H_M%M")
model_save_name = modelFilePath+"model_" + get_model_name() + "_EP" + str(EPOCHS) + "_" + dt_string + ".hdf5"
embeddings_save_name = modelFilePath+"em_" + get_model_name() + "_EP" + str(EPOCHS) + "_" + dt_string + ".hdf5"
print("model weights filepath name is: ",model_save_name)
stps= train_stop_idx//bs
my_callbacks =[EarlyStopping(patience=PATIENCE),
ModelCheckpoint(filepath=modelFilePath+'model.h5',
save_weights_only=True,save_best_only=True,monitor='val_loss'),
TensorBoard(log_dir='./models/logs')]
valid_Stps = (image_count-train_stop_idx)//bs
history = model.fit_generator(train_generator,epochs=EPOCHS, steps_per_epoch=stps,
validation_data=test_generator, validation_steps=valid_Stps, callbacks=my_callbacks, verbose=1)
#model.save_weights(model_save_name)
#base_model.save_weights(embeddings_save_name)
testgen = generate_triplets(BATCH_SIZE=1)
adata = next(testgen )
pred = model.predict(adata[0])
a_em = np.squeeze(base_model.predict(adata[0][0]))
b_em = np.squeeze(base_model.predict(adata[0][1]))
c_em = np.squeeze(base_model.predict(adata[0][2]))
print("difference between anchor and Positive:",np.sum(a_em-b_em))
print("difference between anchor and negative:", np.sum(a_em - c_em))
#this sum(square) metric is better
print("sum(square)difference between anchor and Positive:", np.sum(np.square(a_em - b_em)))
print("sum(square)difference between anchor and negative:", np.sum(np.square(a_em - c_em)))
'''
import time
timestart = time.time()
c1_em = base_model.predict(data[0][2])#directly predict on batch to speed up
timestop = time.time()
print("Time for prediction {} ms".format((timestop - timestart)*1000))
timestart = time.time()
score = cosine_similarity(a_em, b_em)
timestop = time.time()
print("Time for cosine similarity{} ms".format((timestop - timestart) * 1000))
print("cosine sim between anchor and Positive:", score)
print("cosine similarity between anchor and negative:", cosine_similarity(a_em, c_em))
'''
return model, base_model
def train_basic_traindev(model, base_model, epochs=10,batchsize = 32):
image_count= 500#100_00# this si actual length of data in seq--------- len(Q_List)
train_stop_idx = 0.9*image_count
bs=batchsize
train_generator = generate_triplets_train_imgs(start=0,stop=train_stop_idx,BATCH_SIZE=bs)
test_generator = generate_triplets( BATCH_SIZE=bs)
data = next(train_generator)
#plot_triplets(data)
EPOCHS = epochs
modelFilePath = "./models/weights/"
stps= train_stop_idx//bs
my_callbacks =[EarlyStopping(patience=20),
ModelCheckpoint(filepath=modelFilePath+'model.h5',
save_weights_only=True,save_best_only=True,monitor='val_loss'),
TensorBoard(log_dir='./models/logs')]
valid_Stps = (image_count-train_stop_idx)//bs
history = model.fit_generator(train_generator,epochs=EPOCHS, steps_per_epoch=stps,
validation_data=test_generator, validation_steps=valid_Stps, callbacks=my_callbacks,
verbose=1)
testgen = generate_triplets(BATCH_SIZE=1)
adata = next(testgen )
pred = model.predict(adata[0])
a_em = np.squeeze(base_model.predict(adata[0][0]))
b_em = np.squeeze(base_model.predict(adata[0][1]))
c_em = np.squeeze(base_model.predict(adata[0][2]))
print("difference between anchor and Positive:",np.sum(a_em-b_em))
print("difference between anchor and negative:", np.sum(a_em - c_em))
#this sum(square) metric is better
print("sum(square)difference between anchor and Positive:", np.sum(np.square(a_em - b_em)))
print("sum(square)difference between anchor and negative:", np.sum(np.square(a_em - c_em)))
return model, base_model
def test_hardbatch(model, base_model, epochs, batchsize = 32, largeBS = 100):
image_count = len(Q_List)
train_stop_idx = int(0.8 * image_count)
largeBS = largeBS
bs = batchsize
usehdf5Sequence = True
patience = PATIENCE
#base_model = embedding_model()
#triplets, labels = get_batch_hard(base_model, large_Generator, draw_batch_size=largeBS,actual_batch_size=bs)# if return
#hardbatch_gen = get_batch_hard(base_model, large_Generator, draw_batch_size=largeBS,actual_batch_size=bs)
large_Generator = generate_triplets(start=0, stop=train_stop_idx, BATCH_SIZE=largeBS,mode ='train')
test_generator = generate_triplets(start=train_stop_idx+1, stop=image_count-1, BATCH_SIZE=bs)
if usehdf5Sequence:
large_Generator = generate_triplets_hdfseq(start=0, stop=train_stop_idx, batch_sz=largeBS, mode='train')
test_generator = generate_triplets_hdfseq(start=train_stop_idx + 1, stop=image_count - 1, batch_sz=bs)
#model = complete_model(base_model)
#model.compile(loss=identity_loss, optimizer=Adam(1e-4))
import time
from datetime import datetime
modelFilePath = "./models/weights/"
#base_model.load_weights(modelFilePath + "Embeddings_best.hdf5")
#model.load_weights(modelFilePath + "complete_res18_best.hdf5")
EPOCHS = epochs
now = datetime.now()
dt_string = now.strftime("%d-%m-%Y_H%H_M%M")
model_save_name = modelFilePath + "model_" + get_model_name() + "_EP" + str(EPOCHS) + "_" + dt_string + ".hdf5"
embeddings_save_name = modelFilePath + "em_" + get_model_name() + "_EP" + str(EPOCHS) + "_" + dt_string + ".hdf5"
print("model weights filepath name is: ", model_save_name)
#history = model.fit_generator(hardbatch_gen, epochs=2, steps_per_epoch=10,
# validation_data=test_generator, validation_steps=10)
steps_per_ep = int(train_stop_idx//bs)
steps_per_eval = int((image_count-train_stop_idx)//bs)
n_iter = steps_per_ep*EPOCHS
n_iteration=0#starting count
best_val_loss = 1000
eval_every = min(100,steps_per_ep)
best_val_index = 0
print("Starting Semi-Hard Negative training process!")
print("-------------------------------------")
t_start = time.time()
for i in range(1, n_iter + 1):
#triplets,labels = get_batch_hard(base_model, large_Generator, draw_batch_size=largeBS,actual_batch_size=bs)
triplets,labels = get_batch_semihardNeg(base_model, large_Generator, draw_batch_size=largeBS,actual_batch_size=bs, alpha=ALPHA)
loss = model.train_on_batch(triplets, labels)
n_iteration += 1
if i % eval_every == 0:
print("{}/{} -------------".format(i,n_iter))
print("[{3}] Time for {0} iterations: {1:.1f} mins, Train Loss: {2}".format(i, (time.time() - t_start) / 60.0,
loss, n_iteration))
val_loss = []
for ii in range(steps_per_eval):
data, labels = next(test_generator)
val_loss.append(model.predict_on_batch(data))
curr_val_loss = np.mean(np.mean(val_loss))
print("val_loss = ", curr_val_loss)
if(curr_val_loss <best_val_loss):
print("best loss found, previous: {}, current: {} ".format(best_val_loss,curr_val_loss))
best_val_loss = curr_val_loss
best_val_index = i
print("curr best_val_index= ", best_val_index)
base_model.save_weights(modelFilePath + "SMHD_Embeddings_best.hdf5")
#model.save_weights(modelFilePath + "complete_res18_best.hdf5")
if ((n_iteration - best_val_index) > patience * steps_per_ep):
print("best val loss={}, at iter={}".format(best_val_loss, best_val_index))
break
#probs, yprob = compute_probs(network, x_test_origin[:n_val, :, :, :], y_test_origin[:n_val])
#model.save_weights(model_save_name)
#base_model.save_weights(embeddings_save_name)
return model, base_model
def getHardNegList(I, k =1):
out =[]
lenI= len(I)
if k==1:
matches = [index for index, value in enumerate(I) if value[0]==index]
else:
matches = [index for index, value in enumerate(I) if index in value[0:k]]
#non_matching_idx = [i for i in range(lenI) if i not in matches]
non_matching_idx = [i for i in range(lenI) if i not in matches]
negIdx = [I[ii][0] for ii in non_matching_idx]
return non_matching_idx, negIdx
def test_hardOfflineBatch(model, base_model, epochs,batchsize = 16):
Isaved = pickle.load(open("./data/L2Index_2_prev.p", "rb"))
queryId, negId = getHardNegList(Isaved)
count = len(queryId)
train_stop = int(0.8 * count)
print("train_stop= ", train_stop)
bs = batchsize
EPOCHS = epochs #10
patience = PATIENCE # in epochs
train_generator = generate_offline_triplets(queryId, negId, 0, train_stop, BATCH_SIZE=bs,mode='train')
test_generator = generate_offline_triplets(queryId, negId, train_stop + 1, count, BATCH_SIZE=bs)
#model = complete_model(base_model)
#model.compile(loss=identity_loss, optimizer=Adam(1e-4))
modelFilePath = "./models/weights/"
#base_model.load_weights(modelFilePath + "Embeddings_best.hdf5")
#model.load_weights(modelFilePath + "complete_res18_best.hdf5")
'''
now = datetime.now()
dt_string = now.strftime("%d-%m-%Y_H%H_M%M")
model_save_name = modelFilePath + "model_" + get_model_name() + "_EP" + str(EPOCHS) + "_" + dt_string + ".hdf5"
embeddings_save_name = modelFilePath + "em_" + get_model_name() + "_EP" + str(EPOCHS) + "_" + dt_string + ".hdf5"
print("model weights filepath name is: ", model_save_name)
'''
#history = model.fit_generator(hardbatch_gen, epochs=2, steps_per_epoch=10,
# validation_data=test_generator, validation_steps=10)
steps_per_ep = int(train_stop//bs)
n_iter = steps_per_ep*EPOCHS
n_iteration=0#starting count
best_val_loss = 1000
eval_steps = int((count - train_stop)//bs)+2
eval_every_nsteps = 100
best_val_index = 0
print("Starting HardOffline training process!")
print("-------------------------------------")
t_start = time.time()
for i in range(1, n_iter + 1):
triplets,labels = next(train_generator)
loss = model.train_on_batch(triplets, labels)
n_iteration += 1
if i % eval_every_nsteps == 0:
print("{}/{} -------------".format(i,n_iter))
print("[{3}] Time for {0} iterations: {1:.1f} mins, Train Loss: {2}".format(i, (time.time() - t_start) / 60.0,
loss, n_iteration))
val_loss = []
for ii in range(eval_steps):
data, labels1 = next(test_generator)
val_loss.append(model.predict_on_batch(data))
curr_val_loss = np.mean(np.mean(val_loss))
print("val_loss = ", curr_val_loss)
if(curr_val_loss <best_val_loss):
print("best loss found, previous: {}, current: {} ".format(best_val_loss,curr_val_loss))
best_val_loss = curr_val_loss
best_val_index = i
print("curr best_val_index= ", best_val_index)
base_model.save_weights(modelFilePath + "OFF_Embeddings_res50_best.hdf5")
#model.save_weights(modelFilePath + "complete_res50_best.hdf5")
if ((n_iteration - best_val_index) > patience * steps_per_ep):
print("best val loss={}, at iter={}".format(best_val_loss, best_val_index))
break
#model.save_weights(modelFilePath + "complete_final.hdf5")
#base_model.save_weights(modelFilePath + "Embeddings_final.hdf5")
return model, base_model
def trainLoop():
base_model = embedding_model()
model = complete_model(base_model)
model.summary()
model.compile(loss=identity_loss, optimizer=Adam(1e-4))
modelFilePath = "./models/weights/"
model.load_weights(modelFilePath + "resnet50Reg0.8complete_final.hdf5")
#model.load_weights(modelFilePath + "model.h5")
model, base_model = test_hardbatch(model, base_model, epochs=1,batchsize=32,largeBS=64)
model, base_model = train_basic(model, base_model, epochs=2)#40
Ibasic = findAccuracy(base_model)
pickle.dump(Ibasic ,open("./data/L2Index_2_prev.p", "wb"))
model, base_model = test_hardOfflineBatch(model, base_model, epochs=2)#orig=20
#model.load_weights(modelFilePath+"resnet50Regcomplete_90%.hdf5")
#base_model.load_weights(modelFilePath + "Embeddings_res50_best.hdf5")
Ioff = findAccuracy(base_model)
pickle.dump(Ioff, open("./data/L2Index_2_prev.p", "wb"))
model, base_model = test_hardbatch(model, base_model, epochs=1)
Ihard = findAccuracy(base_model)
pickle.dump(Ihard, open("./data/L2Index_2_prev.p", "wb"))
model, base_model = test_hardOfflineBatch(model, base_model, epochs=10)
findAccuracy(base_model)
model.save_weights(modelFilePath +get_model_name()+ "complete_final.hdf5")
base_model.save_weights(modelFilePath + get_model_name()+"Embeddings_final.hdf5")
def generate_subset_embeddings():
base_model = embedding_model()
base_model.load_weights("./models/weights/" + "resnet50Reg0.8Embeddings_final.hdf5")
#base_model.load_weights("./models/weights/" + "OFF_Em_res50_best.hdf5")
#base_model.load_weights("./models/weights/" + "resnet50Regbase_90_.hdf5")
#findAccuracy(base_model, save=False) #uses old method
image_list, ids = getImIds('./list_files/subset_1_queries',"D:/prjs/im-similarity/data/query")
XQ = gen_embeddingsSeq(base_model, './data/image/im_subset_query.hdf5', ids,
outFile='./data/embed/subset_query_em_resnet50Reg.hdf5',batch=50)
image_list, ids = getImIds('./list_files/subset_1_references',
"C:/Users/parajav/PycharmProjects/isc/reference/reference")
XD = gen_embeddingsSeq(base_model,'./data/image/im_subset_ref.hdf5', ids,
outFile='./data/embed/subset_ref_em_resnet50Reg.hdf5', batch=50)
d = 256
index = faiss.IndexFlatL2(d)
k = 1
index.add(XD)
D, I = index.search(XQ, k) # search top k
print("matching index after training....")
# print(I)
getMatchingScore(I, k)
def getClassifierMetrics(y_test, y_pred):
from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, roc_auc_score, precision_score, \
recall_score, precision_recall_curve
from sklearn.metrics import f1_score, balanced_accuracy_score
print("*************Suggested accuracy from metrics evaluation************")
print(f'Accuracy Score: {accuracy_score(y_test, y_pred)}')
print(f'Balanced Accuracy Score: {balanced_accuracy_score(y_test, y_pred)}')
print(f'Confusion Matrix: \n{confusion_matrix(y_test, y_pred)}')
print(f'Area Under Curve: {roc_auc_score(y_test, y_pred)}')
print(f'Recall score: {recall_score(y_test, y_pred)}')
def getBestThreshold(probas_pred, y_true):
from sklearn.linear_model import LogisticRegression
X = probas_pred.reshape(-1, 1)
#***********weighted logistic classifier****************
w = {False: 1, True: 10}# change from 7 to 7.5 to see the effect(def:7.05)
# define model
lg2 = LogisticRegression(random_state=13, class_weight=w)
# fit it
lg2.fit(X, y_true)
y_pred = lg2.predict(X)
getClassifierMetrics(y_true, y_pred)
truepred_dist = X[y_pred == True]
falsepred_dist = X[y_pred == False]
outThresh = min(truepred_dist)
print(" Suggested threshold ", outThresh)
print(" Closest other class dist: ", max(falsepred_dist))
return outThresh
def get_optimizedmetrics(XQ, ids, XD, rids,outfileSuf='_', submission=False):
from isc.metrics import to_arrays
from isc.metrics import evaluate, print_metrics
from isc.io import read_ground_truth, read_descriptors, write_predictions
from isc.descriptor_matching import knn_match_and_make_predictions
predictions = knn_match_and_make_predictions(XQ[0:25000], ids[0:25000], XD, rids, 1, metric=faiss.METRIC_L2)
# ids, XQ = read_descriptors(['./data/embed/full_query_em_resnet50Reg.hdf5'])
gt_matches = read_ground_truth('./list_files/subset_1_ground_truth.csv')
metrics = evaluate(gt_matches, predictions)
print_metrics(metrics)
y_true, probas_pred = to_arrays(gt_matches, predictions)
print("*******Total no of correct predictions: ", len(probas_pred[y_true]))
print("*******Total no of incorrect predictions: ", len(probas_pred[y_true == False]))
bestThresh = getBestThreshold(probas_pred, y_true)[0]
bestThresh = -bestThresh #negate
if submission:
predictions = knn_match_and_make_predictions(XQ, ids, XD, rids, 1, metric=faiss.METRIC_L2, DIST_TH=bestThresh)
print("writing predictions to", './data/fullQ_Ref' + outfileSuf + '_submit.csv')
write_predictions(predictions, './data/fullQ_Ref' + outfileSuf + '_submit.csv')
else:
print("writing predictions to", './data/fullQ_exRef' + outfileSuf + '_raw.csv')
write_predictions(predictions, './data/fullQ_exRef' + outfileSuf + '_raw.csv')
with open('./list_files/mined_negsid' + outfileSuf + '.csv', "w") as pfile:
pfile.write("query_id,neg_id\n")
for count, p in enumerate(predictions):
if (y_true[count] == False):
row = f"{p.query},{p.db}"
pfile.write(row + "\n")
count += 1
del XQ, XD
def generate_full_QueryEmbeddings(base_model='', base_model_filename='', outfileSuf ='_'):
from models.resnet50Reg import embedding_model
if base_model =='':
#load model weights only if base_model is empty
base_model = embedding_model()
#base_model.load_weights("./models/weights/" + "resnet50goodEmbeddings_86_.hdf5")
#base_model.load_weights("./models/weights/" + "OFF_Em_res50_best.hdf5")
if base_model_filename == '':
base_model.load_weights("./models/weights/" + "OFF_Em_res50_best.hdf5")
else:
base_model.load_weights(base_model_filename)
img_dir = "D:/prjs/im-similarity/data/query"#path doesn't matter, we are only using the ids
_rimage_list, rids = getImIds('./list_files/subset_ref_extended',
"C:/Users/parajav/PycharmProjects/isc/reference/reference")
XD = gen_embeddingsSeq(base_model, './data/image/image_extended_Ref.hdf5', rids,
outFile='./data/embed/subset_refExtended_em_resnet50Reg.hdf5', batch=50)
# img_dir = 'C:/Users/parajav/PycharmProjects/isc/query' './list_files/subset_1_queries'
_image_list, ids = getImIds('./list_files/dev_queries', img_dir) # './list_files/dev_queries'
XQ =gen_embeddingsSeq(base_model, './data/image/image_dev_queries.hdf5',ids,
outFile='./data/embed/full_query_em_resnet50Reg.hdf5', batch=50)
get_optimizedmetrics(XQ, ids, XD, rids, outfileSuf)
del XQ, XD
'''
predictions = knn_match_and_make_predictions(XQ[0:25000], ids[0:25000], XD, rids, 1, metric=faiss.METRIC_L2)
del XQ, XD
#ids, XQ = read_descriptors(['./data/embed/full_query_em_resnet50Reg.hdf5'])
gt_matches = read_ground_truth('./list_files/subset_1_ground_truth.csv')
metrics = evaluate(gt_matches, predictions)
print_metrics(metrics)
print("writing predictions to", './data/fullQ_exRef'+outfileSuf+'_raw.csv')
write_predictions(predictions, './data/fullQ_exRef'+outfileSuf+'_raw.csv')
y_true, probas_pred = to_arrays(gt_matches, predictions)
print("*******Total no of correct predictions: ", len(probas_pred[y_true]))
print("*******Total no of incorrect predictions: ", len(probas_pred[y_true==False]))
getBestThreshold(probas_pred, y_true)
with open('./list_files/mined_negsid'+outfileSuf+'.csv', "w") as pfile:
pfile.write("query_id,neg_id\n")
for count, p in enumerate(predictions):
if(y_true[count]==False):
row = f"{p.query},{p.db}"
pfile.write(row + "\n")
count += 1
'''
def generate_full_RefEmbeddings():
from isc.io import read_descriptors
base_model = embedding_model()
#base_model.load_weights("./models/weights/" + "OFF_Em_res50_best.hdf5")
base_model.load_weights("./models/weights/" + "resnet50Reg0.8Embeddings_final.hdf5")
name = get_model_name()
ref_file_list = './list_files/references'
ref_img_dir = 'C:/Users/parajav/PycharmProjects/isc/reference/reference'
ref_image_list, ref_ids = getImIds(ref_file_list, ref_img_dir)
print("totoal IDS:", len(ref_ids))
interval = 50000#50K
iters = int(len(ref_ids)/interval)
hdf5_imagelist = ['./data/image/image_full_ref_' + str(i) + '.hdf5' for i in range(20)]
print("iters", iters)
for ii in range(0,iters):
i0 =ii*interval
i1 = (ii+1)*interval
print("reading files from {} to {}".format(i0, i1))
XD =gen_embeddingsSeq(base_model, hdf5_imagelist[ii], file_ids=ref_ids[i0:i1],
outFile='./data/embed/full_ref_em_' +str(ii)+ name + '.hdf5',batch=100)
del XD
anchor_img_dir = "D:/prjs/im-similarity/data/query"
q_image_list, q_ids = getImIds('./list_files/dev_queries', anchor_img_dir)
XQ =gen_embeddingsSeq(base_model, './data/image/image_dev_queries.hdf5',q_ids,
outFile='./data/embed/full_query_em_resnet50Reg.hdf5', batch=50)
#q_image_ids, XQ = read_descriptors(['./data/embed/full_query_em_resnet50Reg.hdf5'])
db_descs = ['./data/embed/full_ref_em_' + str(i) + name + '.hdf5' for i in range(20)]
db_image_ids, XD = read_descriptors(db_descs)
get_optimizedmetrics(XQ, q_ids, XD, ref_ids, 'final',submission=False)
def train_public_gt(epochs=20, bs=32):
base_model = embedding_model()
model = complete_model(base_model)
model.load_weights("./models/weights/" + "resnet50Reg0.8complete_final.hdf5")
model.summary()
model.compile(loss=identity_loss, optimizer=Adam(1e-4))
#base_model.load_weights("./models/weights/" + "resnet50Regbase_90_.hdf5")
name = get_model_name()
filename = './list_files/public_ground_truth.csv'
public_gt_array = []
with open(filename, "r") as cfile:
for line in cfile:
line = line.strip()
if line == "query_id,reference_id":
continue
q, db = line.split(",")
public_gt_array.append([q,db])
count = len(public_gt_array)
train_stop = int(0.8 * count)
print("train_stop= ", train_stop)
EPOCHS = epochs # 10
patience = PATIENCE # in epochs
train_generator = generate_dev_triplets(public_gt_array[0:train_stop], batch_sz=bs)
test_generator = generate_dev_triplets(public_gt_array[train_stop:count], batch_sz=bs)
#model.compile(loss=identity_loss, optimizer=Adam(1e-4))
modelFilePath = "./models/weights/"
# base_model.load_weights(modelFilePath + "Embeddings_best.hdf5")
# model.load_weights(modelFilePath + "complete_res18_best.hdf5")
steps_per_ep = int(train_stop // bs)
n_iter = steps_per_ep * EPOCHS
n_iteration = 0 # starting count
best_val_loss = 1000
eval_steps = int((count - train_stop) // bs) + 2
eval_every_nsteps = min(50, steps_per_ep)
best_val_index = 0
print("Starting training process!")
print("-------------------------------------")
t_start = time.time()
for i in range(1, n_iter + 1):
triplets, labels = next(train_generator)
loss = model.train_on_batch(triplets, labels)
n_iteration += 1
if i % eval_every_nsteps == 0:
print("{}/{} -------------".format(i, n_iter))
print(
"[{3}] Time for {0} iterations: {1:.1f} mins, Train Loss: {2}".format(i, (time.time() - t_start) / 60.0,
loss, n_iteration))
val_loss = []
for ii in range(eval_steps):
data, labels1 = next(test_generator)
val_loss.append(model.predict_on_batch(data))
curr_val_loss = np.mean(np.mean(val_loss))
print("val_loss = ", curr_val_loss)
if (curr_val_loss < best_val_loss):
print("best loss found, previous: {}, current: {} ".format(best_val_loss, curr_val_loss))
best_val_loss = curr_val_loss
best_val_index = i
print("curr best_val_index= ", best_val_index)
base_model.save_weights(modelFilePath + "dev_base_Res50_best.hdf5")
# model.save_weights(modelFilePath + "complete_res50_best.hdf5")
if ((n_iteration - best_val_index) > patience * steps_per_ep):
print("best val loss={}, at iter={}".format(best_val_loss, best_val_index))
break
model.save_weights(modelFilePath + "complete_final.hdf5")
base_model.save_weights(modelFilePath + "base_Res50.hdf5")
findAccuracy(base_model)
return model, base_model
def main():
# Get command line arguments
print("inside main")
'''args= getArgOptions()
q_image_list,q_ids = getImIds(args.anchor_file_list,args.anchor_img_dir)
ref_image_list, ref_ids = getImIds(args.ref_file_list, args.ref_img_dir)
global Q_List, R_List
global Q_IDS, REF_IDS
Q_List = q_image_list
R_List = ref_image_list
Q_IDS = q_ids
REF_IDS = ref_ids
import shutil
for f in q_image_list:
shutil.copy(f, 'D:\\prjs\\im-similarity\\data\\subset\\query')
exit()
'''
#generate_subset_embeddings()
#save_QueryImagesAsHdf5()
#save_RefImagesAsHdf5()
#generate_full_QueryEmbeddings()
#trainLoop()
#analyze_subsetAcc()
#generate_full_RefEmbeddings()
#save_subsetImagesAsHdf5()
#generate_subset_embeddings()
trainLoop()
#generate_full_QueryEmbeddings('models/weights/OFF_Embeddings_res50_best.hdf5','off')
#generate_full_QueryEmbeddings('models/weights/SMHD_Embeddings_best.hdf5',"_SMHD")
#generate_full_QueryEmbeddings('models/weights/resnet50Reg0.8Embeddings_final.hdf5','_2day')
#generate_full_QueryEmbeddings('models/weights/resnet50Regbase_90_.hdf5','_colab90')
#generate_full_RefEmbeddings()
#train_public_gt(epochs=20, bs=32)
#mytest_hdf5loader()
#name="resnet50good"
#generate_full_embeddings()
if __name__ == '__main__':
main()