-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdicow_encoder.py
314 lines (285 loc) · 13.7 KB
/
dicow_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import torch
from torch import nn
from transformers.modeling_outputs import CausalLMOutput, BaseModelOutput
from transformers.models.whisper.modeling_whisper import WhisperEncoder, WhisperEncoderLayer, WHISPER_ATTENTION_CLASSES, \
sinusoids
from modeling_dicow import TargetSpeakerAmplifier, CustomLinear, CustomDiagonalLinear
from dicow_config import DiCoWConfig
from interactions import Interaction
class DiCoWEncoder(WhisperEncoder):
config_class = DiCoWConfig
def __init__(self, config: DiCoWConfig):
super().__init__(config)
if config.additional_layer:
self.additional_layer = WhisperEncoderLayer(config)
if config.additional_self_attention_layer:
self.additional_self_attention_layer = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=config.d_model,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.ctc_weight = config.ctc_weight
if config.sub_sample:
self.subsample_conv1 = nn.Conv1d(
in_channels=config.d_model,
out_channels=config.d_model,
kernel_size=3,
stride=2,
padding=1,
bias=False,
)
self.subsample_conv2 = nn.Conv1d(
in_channels=config.d_model,
out_channels=config.d_model,
kernel_size=3,
stride=2,
padding=1,
bias=False,
)
self.lm_head = nn.Linear(config.d_model, config.vocab_size + 1, bias=False)
self.final_dropout = nn.Dropout(config.final_dropout)
if config.use_target_amplifiers:
num_amplifiers = self.config.apply_target_amp_to_n_layers if self.config.apply_target_amp_to_n_layers != -1 else len(
self.layers)
self.target_amplifiers = nn.ModuleList([
TargetSpeakerAmplifier(config.d_model,
non_target_rate=0.0 if i == 0 else 1.0,
is_diagonal=config.target_amp_is_diagonal,
bias_only=config.target_amp_bias_only,
use_silence=config.target_amp_use_silence,
use_target=config.target_amp_use_target,
use_overlap=config.target_amp_use_overlap,
use_non_target=config.target_amp_use_non_target)
for i in range(num_amplifiers)
])
self.first_timestamp_position = self.config.vocab_size - 30 * 50 # 30 seconds of 50 Hz timestamps
if config.mt_num_speakers > 1:
self.interaction = Interaction(config)
self.post_init()
def _init_weights(self, module):
std = self.config.init_std
target_amp_init_method = self.config.target_amp_init
if isinstance(module, CustomLinear):
with torch.no_grad():
if target_amp_init_method == 'random':
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.normal_(mean=0.0, std=std)
elif target_amp_init_method == 'non-disturbing':
module.weight.data = torch.eye(*module.weight.shape).data
if module.bias is not None:
module.bias.data.zero_()
elif target_amp_init_method == 'disparagement':
eye = torch.eye(*module.weight.shape)
eye *= module.init_eye_val
module.weight.data = eye.data
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, CustomDiagonalLinear):
with torch.no_grad():
if target_amp_init_method == 'random':
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.normal_(mean=0.0, std=std)
elif target_amp_init_method == 'non-disturbing':
module.weight.data = torch.ones_like(module.weight.data).data
if module.bias is not None:
module.bias.data.zero_()
elif target_amp_init_method == 'disparagement':
module.weight.data = module.init_eye_val * torch.ones_like(module.weight.data).data
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, TargetSpeakerAmplifier):
if module.bias_only:
if target_amp_init_method == 'random':
module.target_linear.data.normal_(mean=0.0, std=std)
module.non_target_linear.data.normal_(mean=0.0, std=std)
module.overlap_linear.data.normal_(mean=0.0, std=std)
module.silence_linear.data.normal_(mean=0.0, std=std)
else:
module.target_linear.data.zero_()
module.non_target_linear.data.zero_()
module.overlap_linear.data.zero_()
module.silence_linear.data.zero_()
elif isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, WhisperEncoder):
with torch.no_grad():
embed_positions = module.embed_positions.weight
embed_positions.copy_(sinusoids(*embed_positions.shape))
@classmethod
def _load_pretrained_model(
cls,
model,
state_dict,
loaded_keys,
resolved_archive_file,
pretrained_model_name_or_path,
**kwargs
):
for key in list(state_dict.keys()):
if key.startswith("encoder."):
state_dict[key[8:]] = state_dict.pop(key)
loaded_keys.remove(key)
loaded_keys.append(key[8:])
output = super()._load_pretrained_model(
model,
state_dict,
loaded_keys,
resolved_archive_file,
pretrained_model_name_or_path,
**kwargs
)
return output
def get_loss(self, logits, labels):
if labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
if self.config.remove_timestamps_from_ctc:
labels = torch.nn.utils.rnn.pad_sequence([label[label < self.first_timestamp_position] for label in labels],
padding_value=-100).T
input_lengths = torch.full((logits.shape[0],), fill_value=logits.shape[1],
device=logits.device)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
# flattened_targets = labels_enc.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=True):
ctc_loss = nn.functional.ctc_loss(
log_probs,
labels,
input_lengths,
target_lengths,
blank=logits.shape[-1] - 1,
reduction=self.config.ctc_loss_reduction,
zero_infinity=True,
)
return ctc_loss
def forward(
self,
input_features,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
vad_mask=None,
per_group_sizes=None
):
# For MT-ASR the input has shape (B X S) x F x T
# we can use torch.view(B, S, F, -1) to obtain
# new tensor with speaker dim
expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0]
if input_features.shape[-1] != expected_seq_length:
if input_features.shape[-1] > expected_seq_length:
return CausalLMOutput(
logits=None,
hidden_states=None,
attentions=None,
)
else:
raise ValueError(
f"Whisper expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight
if hasattr(self, "shift_embeds") and self.shift_embeds:
embed_pos = embed_pos[
torch.clamp(((vad_mask[:, 1, :] + vad_mask[:, 3, :]).cumsum(dim=-1) - 1), min=0).to(torch.long)]
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if self.config.use_target_amplifiers and idx < len(self.target_amplifiers):
hidden_states = self.target_amplifiers[idx](hidden_states, vad_mask)
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
None,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
None,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
outputs = tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
else:
outputs = BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
if hasattr(self, "interaction"):
outputs.last_hidden_state = self.interaction(
outputs.last_hidden_state,
per_group_sizes
)
outputs.hidden_states = (*outputs.hidden_states[:-1], outputs.last_hidden_state)
if self.config.additional_layer:
inter_output, = self.additional_layer(
outputs.last_hidden_state,
attention_mask=None,
output_attentions=output_attentions,
layer_head_mask=None,
)
elif self.config.additional_self_attention_layer:
inter_output, _, __ = self.additional_self_attention_layer(
outputs.last_hidden_state,
attention_mask=None,
output_attentions=output_attentions,
layer_head_mask=None,
)
else:
inter_output = outputs.last_hidden_state
inter_output = self.final_dropout(inter_output)
if self.config.sub_sample:
inter_output = self.subsample_conv2(self.subsample_conv1(inter_output.transpose(1, 2))).transpose(1, 2)
logits = self.lm_head(inter_output)
return CausalLMOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)