-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_classifier.py
222 lines (167 loc) · 7.16 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import yaml
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from tensorboardX import SummaryWriter
import utils
import utils.few_shot as fs
from utils.get_data_loader import get_fs_loader, get_classification_loader
from utils.get_model import get_model
from utils.get_config import get_config_classifier as get_config
def main(config, command, save_dir):
save_path = os.path.join(save_dir, config['name'])
utils.ensure_path(save_path)
utils.set_log_path(save_path)
with open(os.path.join(save_path, 'command.txt'), 'w') as f:
print(command, file=f)
utils.log(config['name'])
writer = SummaryWriter(os.path.join(save_path, 'tensorboard'))
train_loader, n_classes = get_classification_loader(sub_dsname='train_dataset', config=config)
config['model_args']['classifier_args']['n_classes'] = n_classes
if config.get('val_dataset') is not None:
val_loader, _ = get_classification_loader(sub_dsname='val_dataset', config=config)
else:
val_loader = None
yaml.dump(config, open(os.path.join(save_path, 'config.yaml'), 'w'))
# few-shot eval
fs_loaders = dict()
for s in ['test', 'val']:
name_ = f"fs_{s}_dataset"
if config.get(name_) is not None:
fs_loaders[name_] = {nshot_: get_fs_loader(sub_dsname=name_, config={**config, 'n_shot': nshot_}) for nshot_ in [1, 5]}
#### Model and Optimizer ####
model = get_model(config)
if len(fs_loaders) != 0:
fs_model = get_model({'model': 'cosine', 'model_args': {'encoder': None}})
fs_model.encoder = model.encoder
fs_model.encoder_name = config['model_args']['encoder']
if torch.cuda.device_count() > 1:
is_parallel = True
model = nn.DataParallel(model)
if len(fs_loaders) != 0:
fs_model = nn.DataParallel(fs_model)
else:
is_parallel = False
utils.log('num params: {}'.format(utils.compute_n_params(model)))
optimizer, lr_scheduler = utils.make_optimizer(
model.parameters(),
config['optimizer'], **config['optimizer_args'])
########
max_va = 0.
timer_used = utils.Timer()
timer_epoch = utils.Timer()
aves_keys = ['tl', 'ta', 'vl', 'va', 'fsat-1', 'fsat-5', 'fsav-1', 'fsav-5']
for epoch in range(1, config['max_epoch'] + 1):
timer_epoch.s()
aves = {k: utils.Averager() for k in aves_keys}
# train
model.train()
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], epoch)
for data, label in tqdm(train_loader, desc='train', leave=False):
data, label = data.cuda(), label.cuda()
logits = model(data)
loss = F.cross_entropy(logits, label)
acc = utils.compute_acc(logits, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
aves['tl'].add(loss.item())
aves['ta'].add(acc)
logits = None; loss = None
# eval
if val_loader is not None:
model.eval()
for data, label in tqdm(val_loader, desc='val', leave=False):
data, label = data.cuda(), label.cuda()
with torch.no_grad():
logits = model(data)
loss = F.cross_entropy(logits, label)
acc = utils.compute_acc(logits, label)
aves['vl'].add(loss.item())
aves['va'].add(acc)
if not epoch % config['eval_fs_epoch']:
for key, value_ in fs_loaders.items():
s = key.split('_')[1]
for nshot__, loader in value_.items():
np.random.seed(0)
for data, _ in tqdm(loader, desc=f"fs-{s}-{nshot__}", leave=False):
with torch.no_grad():
logits, acc, _, _ = fs.predict(
model=fs_model,
data=data,
n_way=config['n_way'],
n_shot=nshot__,
n_query=config['n_query'],
n_pseudo=config['n_pseudo'],
ep_per_batch=config['ep_per_batch'],
)
aves['fsa' + s[0] + '-' + str(nshot__)].add(acc)
# post
if lr_scheduler is not None:
lr_scheduler.step()
for k, v in aves.items():
aves[k] = v.item()
t_epoch = utils.time_str(timer_epoch.t())
t_used = utils.time_str(timer_used.t())
t_estimate = utils.time_str(timer_used.t() / epoch * config['max_epoch'])
if epoch <= config['max_epoch']:
epoch_str = str(epoch)
else:
epoch_str = 'ex'
log_str = 'epoch {}, train {:.4f}|{:.4f}'.format(
epoch_str, aves['tl'], aves['ta'])
writer.add_scalars('loss', {'train': aves['tl']}, epoch)
writer.add_scalars('acc', {'train': aves['ta']}, epoch)
if val_loader is not None:
log_str += ', val {:.4f}|{:.4f}'.format(aves['vl'], aves['va'])
writer.add_scalars('loss', {'val': aves['vl']}, epoch)
writer.add_scalars('acc', {'val': aves['va']}, epoch)
if not epoch % config['eval_fs_epoch']:
for key, value_ in fs_loaders.items():
s = key.split('_')[1]
tag = s[0]
log_str += f" {s}: "
for nshot in value_.keys():
key = 'fsa' + tag + '-' + str(nshot)
log_str += ' {}: {:.4f}'.format(nshot, aves[key])
writer.add_scalars('acc', {key: aves[key]}, epoch)
if epoch <= config['max_epoch']:
log_str += ', {} {}/{}'.format(t_epoch, t_used, t_estimate)
else:
log_str += ', {}'.format(t_epoch)
utils.log(log_str)
if is_parallel:
model_ = model.module
else:
model_ = model
training = {
'epoch': epoch,
'optimizer': config['optimizer'],
'optimizer_args': config['optimizer_args'],
'optimizer_sd': optimizer.state_dict(),
}
save_obj = {
'file': __file__,
'config': config,
'model': config['model'],
'model_args': config['model_args'],
'model_sd': model_.state_dict(),
'training': training,
}
if epoch <= config['max_epoch']:
torch.save(save_obj, os.path.join(save_path, 'epoch-last.pth'))
if (config['save_epoch'] is not None) and epoch % config['save_epoch'] == 0:
torch.save(save_obj, os.path.join(
save_path, 'epoch-{}.pth'.format(epoch)))
if aves['va'] > max_va:
max_va = aves['va']
torch.save(save_obj, os.path.join(save_path, 'max-va.pth'))
else:
torch.save(save_obj, os.path.join(save_path, 'epoch-ex.pth'))
writer.flush()
if __name__ == '__main__':
config, command, save_dir = get_config()
main(config, command, save_dir) #