forked from NeuralNotW0rk/LoRAW
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefaults.ini
83 lines (55 loc) · 1.66 KB
/
defaults.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
[DEFAULTS]
#name of the run
name = stable_audio_tools
# the batch size
batch_size = 8
# number of GPUs to use for training
num_gpus = 1
# number of nodes to use for training
num_nodes = 1
# Multi-GPU strategy for PyTorch Lightning
strategy = ""
# Precision to use for training
precision = "16-mixed"
# number of CPU workers for the DataLoader
num_workers = 8
# the random seed
seed = 42
# Batches for gradient accumulation
accum_batches = 1
# Number of steps between checkpoints
checkpoint_every = 10000
# trainer checkpoint file to restart training from
ckpt_path = ''
# model checkpoint file to start a new training run from
pretrained_ckpt_path = '.\models\checkpoints\model.ckpt'
# Checkpoint path for the pretransform model if needed
pretransform_ckpt_path = ''
# configuration model specifying model hyperparameters
model_config = '.\models\checkpoints\model_config.json'
# configuration for datasets
dataset_config = '.\datasets\exemple\config.json'
# Dataset folder
dataset_path = '.\datasets\exemple'
# Random cropping of audio files
random_crop = 'true'
# directory to save the checkpoints in
save_dir = '.\models\loras'
# gradient_clip_val passed into PyTorch Lightning Trainer
gradient_clip_val = 0.0
# remove the weight norm from the pretransform model
remove_pretransform_weight_norm = ''
# whether to use LoRA or not
use_lora = 'false'
# checkpoint path for the lora model if needed
lora_ckpt_path = ''
# Network dim
lora_rank = '16'
# Network alpha
lora_alpha = '16'
# Learning rate
learning_rate = '0.0001'
# number of steps between ReLoRA updates
relora_every = 0
# !!!BROKEN!!! experimental quantization for qlora
quantize = 'false'