-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunComplement.py
314 lines (273 loc) · 9.14 KB
/
runComplement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import aitestOrm
import database_connect
import json
import time
import requests
from apiCalls import call, ollama_run, ollama_stop, get_model_config
from jsonschema import validate, ValidationError
from vllm import LLM, SamplingParams
from time import sleep
import subprocess
import sys
import signal
son_process = None
# 定义信号处理函数
def handle_signal(signum, frame):
global son_process
if son_process is not None:
print(f"收到信号 {signum},终止子进程...")
son_process.terminate() # 发送 SIGTERM 给子进程
exit(0)
# 注册信号处理
signal.signal(signal.SIGTERM, handle_signal)
signal.signal(signal.SIGINT, handle_signal)
def get_json(s):
while len(s) > 0 and s[0] != '{':
s = s[1:]
while len(s) > 0 and s[-1] != '}':
s = s[:-1]
return s
# 读取配置文件
with open('config.json', 'r') as config_file:
config = json.load(config_file)
# 获取数据库连接
session = database_connect.get_session('database_aitest')
tables = [aitestOrm.AnnotationGen, aitestOrm.KnlgExp, aitestOrm.CaseGen, aitestOrm.CodeGen, aitestOrm.CodeCor]
schemas = [
{
"type": "object",
"properties": {
"comment": {"type": "string"},
"test_case": {
"type": "array",
"items": {
"type": "object",
"properties": {
"input": {"type": "string"},
"output": {"type": "string"}
},
"required": ["input", "output"],
"additionalProperties": False
}
}
},
"required": ["comment", "test_case"], # 必填字段
"additionalProperties": False # 不允许额外的属性
},
{
"type": "object",
"properties": {
"comment": {"type": "string"},
"code": {"type": "string"}
},
"required": ["comment", "code"], # 必填字段
"additionalProperties": False # 不允许额外的属性
},
{
"type": "object",
"properties": {
"comment": {"type": "string"},
"code": {"type": "string"}
},
"required": ["comment", "code"], # 必填字段
"additionalProperties": False # 不允许额外的属性
}
]
default_complement = [
{
"comment": "测试样例生成失败",
"test_case": [
{
"input": "#@%",
"output": "*&^"
}
]
},
{
"comment": "代码生成失败",
"code": "#@%"
},
{
"comment": "代码纠错失败",
"code": "#@%"
}
]
# 验证json格式
def validate_json(json_string, schema):
try:
# 解析 JSON 字符串
data = json.loads(json_string)
# 使用 jsonschema 验证
validate(instance=data, schema=schema)
return True
except (json.JSONDecodeError, ValidationError) as e:
return False
def get_score_table(prompt: aitestOrm.PromptComp):
score_table = tables[prompt.type - 1]
score = session.query(score_table).filter(score_table.sc_id == prompt.sc_id).first()
return score
def run_prompt_by_api(prompt: aitestOrm.PromptComp):
if prompt.comp_id != None:
print(f"Prompt {prompt.prompt_id} has been complemented.")
return 0
score = get_score_table(prompt)
model_name = score.model_name
response = "None"
# 最大重试次数
max_retries = 5
wait_time = 30
retry_count = 0
success = False
while retry_count < max_retries and not success:
try:
response = call(json.loads(prompt.prompt_json), wait_time)
success = True # 请求成功
except requests.exceptions.Timeout:
retry_count += 1
wait_time += 10
print(f"请求超时,第{retry_count}次重试...")
time.sleep(2) # 等待2秒再重试
except requests.exceptions.ReadTimeout:
retry_count += 1
wait_time += 10
print(f"请求超时,第{retry_count}次重试...")
time.sleep(2) # 等待2秒再重试
except Exception as e:
print(f"发生错误: {e}")
exit(0) # 发生其他错误时停止重试
if prompt.type >= 3:
original_response = response
response = get_json(response)
max_tries = max_retries - retry_count
while not validate_json(response, schemas[prompt.type - 3]) and max_tries > 0:
max_tries -= 1
original_response = call(json.loads(prompt.prompt_json), wait_time)
response = get_json(original_response)
if not validate_json(response, schemas[prompt.type - 3]):
print(f"Prompt {prompt.prompt_id} complement bad json")
print(f"response:\n {original_response}")
response = json.dumps(default_complement[prompt.type - 3], ensure_ascii=False)
complement_gen = aitestOrm.ComplementGen(content=response)
session.add(complement_gen)
session.flush()
prompt.comp_id = complement_gen.comp_id
score.comp_id = complement_gen.comp_id
session.commit()
print(f"Generate complement for prompt {prompt.prompt_id} successfully. comp_id: {complement_gen.comp_id}")
return 1
def run_prompt_by_vllm(llm, sampling_params, prompt: aitestOrm.PromptComp):
conversation = json.loads(prompt.prompt_json)['messages']
outputs = llm.chat(conversation,
sampling_params=sampling_params,
use_tqdm=False)
output = outputs[0]
generated_text = output.outputs[0].text
if prompt.type >= 3:
original_text = generated_text
generated_text = get_json(original_text)
max_tries = 5
while not validate_json(generated_text, schemas[prompt.type - 3]) and max_tries > 0:
max_tries -= 1
outputs = llm.chat(conversation,
sampling_params=sampling_params,
use_tqdm=False)
output = outputs[0]
original_text = output.outputs[0].text
generated_text = get_json(original_text)
if not validate_json(generated_text, schemas[prompt.type - 3]):
print(f"Prompt {prompt.prompt_id} complement bad json")
print(f"response:\n {original_text}")
generated_text = json.dumps(default_complement[prompt.type - 3], ensure_ascii=False)
complement_gen = aitestOrm.ComplementGen(content=generated_text)
session.add(complement_gen)
session.flush()
prompt.comp_id = complement_gen.comp_id
table = tables[prompt.type - 1]
score = session.query(table).filter(table.sc_id == prompt.sc_id).first()
score.comp_id = complement_gen.comp_id
session.commit()
print(f"Generate complement for prompt {prompt.prompt_id} successfully. comp_id: {complement_gen.comp_id}")
return 1
def run_complement():
invalid_prompts = 0
prompts_num = 0
prompts = session.query(aitestOrm.PromptComp).all()
for prompt in prompts:
score_table = tables[prompt.type - 1]
score = session.query(score_table).filter(score_table.sc_id == prompt.sc_id).first()
if score is None:
session.query(aitestOrm.ComplementGen).filter(aitestOrm.ComplementGen.comp_id == prompt.comp_id).delete()
session.delete(prompt)
session.commit()
invalid_prompts += 1
continue
if prompt.comp_id != None:
continue
prompts_num += run_prompt_by_api(prompt)
print(f"Invalid prompts: {invalid_prompts} is deleted.")
print(f"Generate complement for {prompts_num} prompts successfully.")
def run_complement_for_api_model(model):
prompts = session.query(aitestOrm.PromptComp).filter(aitestOrm.PromptComp.comp_id == None).all()
prompts = [prompt for prompt in prompts if json.loads(prompt.prompt_json)['model'] == model]
for prompt in prompts:
run_prompt_by_api(prompt)
def run_complement_for_ollama_model(model):
if not ollama_run(model):
print("Failed to run model.")
return
run_complement_for_api_model(model)
if not ollama_stop(model):
print("Failed to stop model.")
def start_run_complement_for_vllm_model(model):
# 启动推理脚本并等待其完成
print(f"开始推理:{model}")
process = subprocess.Popen(
['python', '-u', 'run_complement_for_vllm_model.py', model],
stdout=sys.stdout, # 将标准输出重定向到父进程的标准输出
stderr=sys.stderr # 将标准错误重定向到父进程的标准错误
)
global son_process
son_process = process
process.wait() # 等待当前推理完成
son_process = None
print(f"推理完成:{model}")
def run_complement_for_vllm_model(model):
config = get_model_config(model)
model_base_path = config['base_path']
llm = LLM(model=model_base_path + "/" + model,
tensor_parallel_size=2,
trust_remote_code=True)
sampling_params = SamplingParams(
temperature=0.0,
top_p=0.95,
max_tokens=4096, # 设置最大生成长度
stop=[] # 禁用默认的停止序列
)
prompts = session.query(aitestOrm.PromptComp).filter(aitestOrm.PromptComp.comp_id == None).all()
prompts = [prompt for prompt in prompts if json.loads(prompt.prompt_json)['model'] == model]
for prompt in prompts:
run_prompt_by_vllm(llm, sampling_params, prompt)
def run_complement_order_by_model():
models = config['models']
for model in models:
print(f"Start to complement for model {model['name']}")
print('-' * 50)
prompts = session.query(aitestOrm.PromptComp).filter(aitestOrm.PromptComp.comp_id == None).all()
prompts = [prompt for prompt in prompts if json.loads(prompt.prompt_json)['model'] == model['name']]
if len(prompts) > 0:
if model['api'] == 'openai':
run_complement_for_api_model(model['name'])
elif model['api'] == 'dashscope':
run_complement_for_api_model(model['name'])
elif model['api'] == 'ollama':
run_complement_for_ollama_model(model['name'])
elif model['api'] == 'vllm':
start_run_complement_for_vllm_model(model['name'])
else:
print(f"model {model['name']} has no prompts to complement.")
print('-' * 50)
print(f"Complement for model {model['name']} finished.")
def run_complement():
run_complement_order_by_model()
if __name__ == '__main__':
run_complement_order_by_model()