-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_P.py
271 lines (235 loc) · 13.2 KB
/
train_P.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from Params import configs
from poisson_instance import Instance_Generator
import numpy as np
from mb_agg import *
from models.actor_critic import Job_Mch_Actor, Job_Mch_Critic
from copy import deepcopy
from agent_utils import select_action_mch, eval_actions_mchs
import torch.nn as nn
from validation import validate
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
device = torch.device(configs.device)
class Memory:
def __init__(self):
self.fea1_mb = []
self.fea2_mb = []
self.fea3_mb = []
self.mask_mb = []
self.mch_time_mb = []
self.job_time_mb = []
self.ci_mb = []
self.a_m_mb = []
self.r_mb = []
self.done_mb = []
self.job_mch_logprobs = []
def clear_memory(self):
del self.fea1_mb[:]
del self.fea2_mb[:]
del self.fea3_mb[:]
del self.mask_mb[:]
del self.mch_time_mb[:]
del self.job_time_mb[:]
del self.ci_mb[:]
del self.a_m_mb[:]
del self.r_mb[:]
del self.done_mb[:]
del self.job_mch_logprobs[:]
def adv_normalize(adv):
std = adv.std()
assert std != 0. and not torch.isnan(std), 'Need nonzero std'
n_advs = (adv - adv.mean()) / (adv.std() + 1e-8)
return n_advs
class PPO:
def __init__(self,
lr,
gamma,
k_epochs,
eps_clip,
n_j,
n_m,
):
self.lr = lr
self.gamma = gamma
self.eps_clip = eps_clip
self.k_epochs = k_epochs
self.policy_job_mch = Job_Mch_Actor(n_j=n_j,
n_m=n_m,
n_layers_fea = configs.num_mlp_layers_fea,
input_dim_fea = configs.input_dim_fea,
hidden_dim_fea = configs.hidden_dim_fea,
out_dim_fea = configs.out_dim_fea,
n_layers_actor = configs.num_mlp_layers_actor,
input_dim_actor = configs.input_dim_actor,
hidden_dim_actor = configs.hidden_dim_actor,
out_dim_actor = configs.out_dim_actor,
device=device)
self.critic_job_mch = Job_Mch_Critic(
n_layers_critic = configs.num_mlp_layers_critic,
input_dim_critic = configs.input_dim_critic,
hidden_dim_critic= configs.hidden_dim_critic,
out_dim_critic = configs.out_dim_critic,
device=device)
self.policy_old_job_mch = deepcopy(self.policy_job_mch)
self.policy_old_job_mch.load_state_dict(self.policy_job_mch.state_dict())
self.job_mch_optimizer = torch.optim.Adam(self.policy_job_mch.parameters(), lr=lr)
self.job_mch_scheduler = torch.optim.lr_scheduler.StepLR(self.job_mch_optimizer,
step_size=configs.decay_step_size,
gamma=configs.decay_ratio)
self.MSE = nn.MSELoss()
def update(self, memory):
'''self.policy_job.train()
self.policy_mch.train()'''
vloss_coef = configs.vloss_coef
ploss_coef = configs.ploss_coef
entloss_coef = configs.entloss_coef
rewards = []
discounted_reward = 0
for reward, is_terminal in zip(reversed(memory.r_mb), reversed(memory.done_mb)):
if is_terminal:
discounted_reward = 0
discounted_reward = reward + (self.gamma * discounted_reward)
rewards.insert(0, discounted_reward)
rewards = torch.tensor(rewards, dtype=torch.float).to(device)
rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-5)
# process each env data
fea1_mb_t = torch.stack(memory.fea1_mb).to(device)
fea1_mb_t = fea1_mb_t.reshape(-1, fea1_mb_t.size(-1))
fea2_mb_t = torch.stack(memory.fea2_mb).to(device)
fea2_mb_t = fea2_mb_t.reshape(-1, fea2_mb_t.size(-1))
fea3_mb_t = torch.stack(memory.fea3_mb).to(device)
fea3_mb_t = fea3_mb_t.reshape(-1, fea3_mb_t.size(-1))
mask_mb_t=torch.stack(memory.mask_mb).to(device).squeeze()
a_m_mb_t=torch.stack(memory.a_m_mb).to(device).squeeze()
mch_time_mb_t=torch.stack(memory.mch_time_mb).reshape(-1,configs.n_m).to(device).squeeze()
job_time_mb_t=torch.stack(memory.job_time_mb).reshape(-1,configs.n_m).to(device).squeeze()
ci_mb_t=torch.stack(memory.ci_mb).reshape(-1,configs.n_m).to(device).squeeze()
old_job_mch_logprobs_mb_t=torch.stack(memory.job_mch_logprobs).to(device).squeeze()
# Optimize policy for K epochs:
for _ in range(self.k_epochs):
job_mch_loss_sum = 0
v_loss_sum = 0
pi_a_mch, a_mch_pool = self.policy_job_mch(fea1=fea1_mb_t,
fea2=fea2_mb_t,
fea3=fea3_mb_t,
mask=mask_mb_t,
mch_time=mch_time_mb_t,
job_time=job_time_mb_t,
ci=ci_mb_t)
vals = self.critic_job_mch(a_mch_pool)
job_mch_v_loss = self.MSE(vals.squeeze(), rewards)
advantages = rewards - vals.view(-1).detach()
advantages = adv_normalize(advantages)
job_mch_logprobs, job_mch_ent_loss = eval_actions_mchs(pi_a_mch.squeeze(), a_m_mb_t)
job_mch_ratios = torch.exp(job_mch_logprobs - old_job_mch_logprobs_mb_t.detach())
job_mch_surr1 = job_mch_ratios * advantages
job_mch_surr2 = torch.clamp(job_mch_ratios, 1 - self.eps_clip, 1 + self.eps_clip) * advantages
job_mch_p_loss = -1*torch.min(job_mch_surr1, job_mch_surr2).mean()
job_mch_ent_loss = - job_mch_ent_loss.clone()
job_mch_loss = ploss_coef * job_mch_p_loss + entloss_coef * job_mch_ent_loss + vloss_coef * job_mch_v_loss
job_mch_loss_sum += job_mch_loss
v_loss_sum += job_mch_v_loss
self.job_mch_optimizer.zero_grad()
job_mch_loss_sum.mean().backward(retain_graph=True)
self.policy_old_job_mch.load_state_dict(self.policy_job_mch.state_dict())
if configs.decayflag:
self.job_mch_scheduler.step()
self.job_mch_optimizer.step()
return job_mch_loss_sum.mean().item(), v_loss_sum.mean().item()
def main():
import random
from Configuration_Env2.MODFJSSP_Env_2 import MODFJSSP
memory = Memory()
torch.manual_seed(configs.torch_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(configs.torch_seed)
np.random.seed(configs.np_seed_train)
random.seed(configs.np_seed_train)
ppo = PPO(configs.lr, configs.gamma, configs.k_epochs, configs.eps_clip,
n_j=configs.n_j,
n_m=configs.n_m)
vali_durs = np.load('./DataGen/durs' + str(configs.n_j) + '_' + str(configs.n_m) + '_Seed' + str(configs.np_seed_validation) + '.npy')
vali_ords = np.load('./DataGen/ords' + str(configs.n_j) + '_' + str(configs.n_m) + '_Seed' + str(configs.np_seed_validation) + '.npy')
# training loop
log = []
vali_makespan = []
vali_U_ave_1 = []
vali_lateness_ave = []
e_ave=20
New_insert=5
machine=5
DDT=1.2
max_updates=500 # No. of episodes for training
V=20 # No. of episodes per validation
for i_update in range(max_updates):
Processing_time, A, D, M_num, Op_num, J, O_num, J_num = Instance_Generator(machine, e_ave, New_insert, DDT)
env = MODFJSSP(J_num, M_num, max(Op_num))
fea1, fea2, fea3, candidate, mask, mch_time, job_time, ci, Lateness_ave, U_ave = env.reset(Processing_time, A, D, M_num, Op_num, J, O_num, J_num)
while True:
fea1_tensor = torch.from_numpy(np.copy(fea1)).to(device).type(torch.float32)
fea2_tensor = torch.from_numpy(np.copy(fea2)).to(device).type(torch.float32)
fea3_tensor = torch.from_numpy(np.copy(fea3)).to(device).type(torch.float32)
candidate_tensor = torch.from_numpy(np.copy(candidate)).to(device).type(torch.int64)
mask_tensor = torch.from_numpy(np.copy(mask)).to(device).reshape(1,-1)
mch_time_tensor = torch.from_numpy(np.copy(mch_time)).to(device).type(torch.float32).expand(J_num, M_num)
job_time_tensor = torch.from_numpy(np.copy(job_time)).to(device).type(torch.float32).expand(J_num, M_num)
ci_tensor = torch.from_numpy(np.copy(ci)).to(device).type(torch.float32).expand(J_num, M_num)
with torch.no_grad():
pi_a_mch, a_mch_pool = ppo.policy_old_job_mch(fea1=fea1_tensor,
fea2=fea2_tensor,
fea3=fea3_tensor,
mask=mask_tensor,
mch_time=mch_time_tensor,
job_time=job_time_tensor,
ci=ci_tensor
)
action, mch, a_m_idx = select_action_mch(pi_a_mch, candidate_tensor, memory)
# print('action:',action)
# print('mch:',mch)
memory.a_m_mb.append(a_m_idx)
memory.fea1_mb.append(fea1_tensor)
memory.fea2_mb.append(fea2_tensor)
memory.fea3_mb.append(fea3_tensor)
memory.mask_mb.append(mask_tensor)
memory.mch_time_mb.append(mch_time_tensor)
memory.job_time_mb.append(job_time_tensor)
memory.ci_mb.append(ci_tensor)
fea1, fea2, fea3, reward, done, candidate, mask, mch_time, job_time, ci, Lateness_ave, U_ave = env.step(action, mch)
ep_reward = max(mch_time)
memory.r_mb.append(reward)
memory.done_mb.append(done)
if env.done():
Makespan = max(torch.squeeze(job_time).numpy())
# or
# Makespan = max(mch_time)
U_ave_1 = 1/U_ave
Lateness_ave=Lateness_ave
break
# ppo.update(memories)
job_mch_loss, v_loss = ppo.update(memory)
memory.clear_memory()
log.append([i_update, Makespan, U_ave_1, Lateness_ave])
if (i_update + 1) % V == 0:
file_writing_obj = open('./' + 'log_' + str(configs.n_j) + '_' + str(configs.n_m) + '_' + str(configs.low) + '_' + str(configs.high) + '.txt', 'w')
file_writing_obj.write(str(log))
# log results
print('Episode {}\t Last makespan: {:.2f}\t Last U_ave_1: {:.2f}\t Last Lateness_ave: {:.2f}\t Mean_Vloss: {:.8f}'.format(
i_update + 1, Makespan, U_ave_1, Lateness_ave, v_loss))
if (i_update + 1) % V == 0:
make_spans, U_ave_1, Lateness_ave = validate(vali_durs, vali_ords, configs.n_j, configs.n_m, ppo.policy_job_mch)
vali_makespan.append(make_spans)
vali_U_ave_1.append(U_ave_1)
vali_lateness_ave.append(Lateness_ave)
torch.save(ppo.policy_job_mch.state_dict(), './{}.pth'.format('policy_job_mch'))
print('The validation quality is:', make_spans, U_ave_1, Lateness_ave)
file_writing_obj1 = open(
'./' + 'vali_obj1_' + str(configs.n_j) + '_' + str(configs.n_m) + '_' + str(configs.low) + '_' + str(configs.high) + '.txt', 'w')
file_writing_obj1.write(str(vali_makespan))
file_writing_obj2 = open(
'./' + 'vali_obj2_' + str(configs.n_j) + '_' + str(configs.n_m) + '_' + str(configs.low) + '_' + str(configs.high) + '.txt', 'w')
file_writing_obj2.write(str(vali_U_ave_1))
file_writing_obj3 = open(
'./' + 'vali_obj3_' + str(configs.n_j) + '_' + str(configs.n_m) + '_' + str(configs.low) + '_' + str(configs.high) + '.txt', 'w')
file_writing_obj3.write(str(vali_lateness_ave))
if __name__ == '__main__':
main()