-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathNCM.py
53 lines (45 loc) · 2.16 KB
/
NCM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
from torch import nn
from torch.autograd import Variable
import numpy as np
import logging
use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
INF = 1e30
class NCM(nn.Module):
def __init__(self, args, query_size, doc_size, vtype_size):
super(NCM, self).__init__()
self.args = args
self.logger = logging.getLogger("NCM")
self.embed_size = args.embed_size
self.hidden_size = args.hidden_size
self.dropout_rate = args.dropout_rate
self.query_size = query_size
self.doc_size = doc_size
self.vtype_size = vtype_size
self.query_embedding = nn.Embedding(query_size, self.embed_size)
self.doc_embedding = nn.Embedding(doc_size, self.embed_size)
self.vtype_embedding = nn.Embedding(vtype_size, self.embed_size // 2)
self.action_embedding = nn.Embedding(2, self.embed_size // 2)
self.gru = nn.GRU(self.embed_size * 3, self.hidden_size, batch_first=True)
self.dropout = nn.Dropout(p=self.dropout_rate)
self.output_linear = nn.Linear(self.hidden_size, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, query, doc, vtype, action, gru_state=None):
batch_size = query.size()[0]
max_doc_num = doc.size()[1]
query_embed = self.query_embedding(query) # [batch_size, 11, embed_size]
doc_embed = self.doc_embedding(doc) # [batch_size, 11, embed_size]
vtype_embed = self.vtype_embedding(vtype) # [batch_size, 11, embed_size // 2]
action_embed = self.action_embedding(action) # [batch_size, 11, embed_size // 2]
gru_input = torch.cat((query_embed, doc_embed, vtype_embed, action_embed), dim=2)
if gru_state == None:
gru_state = Variable(torch.zeros(1, batch_size, self.hidden_size))
if use_cuda:
gru_state = gru_state.cuda()
outputs, gru_state = self.gru(gru_input, gru_state)
outputs = self.dropout(outputs)
logits = self.sigmoid(self.output_linear(outputs)).view(batch_size, max_doc_num)
if logits.shape[1] > 1:
logits = logits[:, 1:]
return logits, gru_state