-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
56 lines (43 loc) · 1.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import csv
import pandas as pd
import numpy as np
import random
def find_ngrams(input, n):
input = input.split(' ')
output = {}
for i in range(len(input)-n+1):
g = ' '.join(input[i:i+n])
output.setdefault(g, 0)
output[g] += 1
return output
# Make a Text Dataset
alphabet = 'abcdefghijklmnopqrstuvwxyz'
list_to_df = []
concat_text = ""
for i in range(100):
time = i
text = ''
for gen_word_i in range(10):
word = ''
num_of_letters = random.randint(3,4)
for gen_letter_i in range(num_of_letters):
random_num = random.randint(0,25)
generated_letter = alphabet[random_num]
word = word+generated_letter
text = text+word+' '
concat_text += text
output_dict = {'time':i, 'text':text}
list_to_df.append(output_dict)
output_df = pd.DataFrame(list_to_df)
f = open("random.txt", "w")
f.write(concat_text)
ngrams = find_ngrams(concat_text,4)
gram_df = pd.DataFrame(ngrams.items())
result_dict = {}
for index, row in output_df.iterrows():
for gramRow in gram_df.iterrows():
if gramRow[1].to_string() in row.text:
result_dict = {'timestamp': row.time, 'ngram': gramRow[0]}
print(result_dict)
# for item in output_df.items():
# print(item)