forked from AvaAvarai/ML_Classifier_Comparison_Tool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabout.txt
39 lines (33 loc) · 1.67 KB
/
about.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Machine Learning Classifier Comparison Tool
Version: 0.2
Author: Alice Williams
Organization: Visual Knowledge Discovery and Imaging Lab
Location: Central Washington University
License: MIT
Description:
This tool allows you to compare multiple machine learning classifiers on your dataset using various evaluation metrics. It supports both cross-validation and direct evaluation on a secondary dataset.
Features:
- Support for 21 different classifiers from scikit-learn and other popular libraries
- Configurable hyperparameters for each classifier
- Cross-validation with customizable splits
- Multiple evaluation metrics (Accuracy, F1-score, Recall)
- Interactive parallel coordinates visualization
- Export results to CSV
- Support for both training and evaluation datasets
- Visualization of the results in a parallel coordinates plot
Classifiers Supported:
- Numerical Data: K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression, Ridge Classifier, Stochastic Gradient Descent (SGD) Classifier
- Binary Data: Bernoulli Naive Bayes
- Categorical Data: Decision Trees, Random Forests, Extra Trees Classifier, Multinomial Naive Bayes
- Mixed Data Types: Gradient Boosting Classifier, Extreme Gradient Boosting (XGBoost), AdaBoost Classifier, Light Gradient Boosting Machine (LightGBM), CatBoost Classifier, Passive Aggressive Classifier, Perceptron
Libraries Used:
- scikit-learn
- pandas
- numpy
- matplotlib
- xgboost
- lightgbm
- catboost
For more information about the classifiers and their parameters,
refer to the scikit-learn documentation:
https://scikit-learn.org/stable/supervised_learning.html