-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluation_experiments.py
143 lines (101 loc) · 4.63 KB
/
evaluation_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 12 21:17:46 2020
@author: orteg
"""
import scipy.stats as stats
import pandas as pd
import numpy as np
### Functions ####
def imandavenport_test(num_models, num_datasets, model_ranks):
chisqF = (12*num_datasets/(num_models*(num_models+1)))*(sum(model_ranks**2)-(num_models*(num_models+1)**2)/4)
Ff = (num_datasets-1)*chisqF/(num_datasets*(num_models-1)-chisqF)
df1 = num_models - 1
df2 = (num_models-1)*(num_datasets-1)
pvalue = 1 - stats.f.cdf(Ff, df1, df2)
print('p-value ROC ranks: ', pvalue)
return pvalue
def bonfholm_test(num_models, num_datasets, model_names, model_ranks, alpha, control = None):
denominator_ = (num_models*(num_models+1)/(6*num_datasets))**0.5
list_pv_ = np.array(model_ranks)
if control == None:
ix_min_ = np.where(list_pv_==np.min(model_ranks))[0]
else:
ix_min_ = np.where(model_names == control)[0]
list_pv = np.delete(list_pv_, ix_min_)
model_names_ = np.delete(model_names, ix_min_)
z_scores = np.asarray([ (list_pv[i] - model_ranks[ix_min_] )/denominator_ for i, _ in enumerate(list_pv) ])
p_values = stats.norm.sf(abs(z_scores)) #one-sided
p_values = p_values.reshape(1,-1).flatten()
ix_sort = np.argsort(p_values)
decision = np.ones(num_models - 1, dtype=bool)
for m, i in enumerate(p_values[ix_sort]):
if i <= alpha/(num_models-1-m):
decision[ix_sort[m]] = False
return model_names[ix_min_], model_names_[decision], p_values
## Load Data
df = pd.read_csv('experimental_results.csv')
cols = ['data_partition','flip_ratio','label_noise']
cond = 'flip_ratio == "0.25"'
df_ = df.copy()
df_ = df_.query(cond)
df_filtered = df_.drop(columns = cols)
# Average Metrics
print(df_filtered.copy().groupby('dataset').mean().mean(axis = 0).to_string() )
print(df_filtered.copy().groupby('dataset').std().mean(axis = 0).to_string())
## EXPORT EXCEL FILES
# df_filtered.copy().groupby('dataset').mean().mean(axis = 0).to_csv('mean75_aggregate_results.csv')
# df_filtered.copy().groupby('dataset').std().mean(axis = 0).to_csv('sd75_aggregate_results.csv')
# df_filtered.copy().groupby('dataset').mean().transpose().to_csv('mean50_detailed_dataset_results.csv')
# df_filtered.copy().groupby('dataset').std().transpose().to_csv('std75_detailed_dataset_results.csv')
#### TECHNIQUES ####
roc_models = ['roc_srf_puhd', 'roc_pubag','roc_elkno','roc_welog',
'roc_spyem','roc_rnkpr','roc_rf',
'roc_rf_puhd','roc_dt_puhd','roc_dt_hd',
'roc_upu','roc_nnpu','roc_imbnnpu']
ap_models = ['ap_srf_puhd', 'ap_pubag','ap_elkno','ap_welog',
'ap_spyem','ap_rnkpr','ap_rf',
'ap_rf_puhd','ap_dt_puhd','ap_dt_hd',
'ap_upu','ap_nnpu','ap_imbnnpu']
f1max_models = ['f1_max_srf_puhd', 'f1_max_pubag', 'f1_max_elkno',
'f1_max_spyem','f1_max_rf', 'f1_max_rf_puhd',
'f1_max_dt_puhd','f1_max_dt_hd','f1_max_upu',
'f1_max_nnpu','f1_max_imbnnpu']
## Evaluation ##
# Optimal F1-score
df_f1scoremax_ = df_[f1max_models].copy().rank(axis = 1, ascending = False)
df_f1scoremax_['dataset'] = df_['dataset']
df_f1_max_transpose = df_f1scoremax_.groupby('dataset').mean().T
df_f1scoremax_rank_mean_ = df_f1_max_transpose.mean(axis = 1)
# PR-AUC
df_ap_ = df_[ap_models].copy().rank(axis = 1, ascending = False)
df_ap_['dataset'] = df_['dataset']
df_ap_transpose = df_ap_.groupby('dataset').mean().T
df_ap_rank_mean_ = df_ap_transpose.mean(axis = 1)
# ROC-AUC
df_roc_ = df_[roc_models].copy().rank(axis = 1, ascending = False)
df_roc_['dataset'] = df_['dataset']
df_roc_transpose = df_roc_.groupby('dataset').mean().T
df_roc_rank_mean_ = df_roc_transpose.mean(axis = 1)
#### HYPOTHESIS TESTING ####
## Optimal F1-Score
N = len(df_f1scoremax_.index)
k = len(df_f1scoremax_rank_mean_)
model_names_ = np.asarray(list(df_f1scoremax_rank_mean_.index))
imandavenport_test(k, N, df_f1scoremax_rank_mean_)
# Holm's Test F1 Score Max
lowest_rank_f1scoremax, no_rejected_f1scoremax, adjpvalues_f1scoremax = bonfholm_test(k, N, model_names_, df_f1scoremax_rank_mean_, 0.05, control=None)
## PR-AUC
N = len(df_ap_.index)
k = len(df_ap_rank_mean_)
model_names_ = np.asarray(list(df_ap_rank_mean_.index))
imandavenport_test(k, N, df_ap_rank_mean_)
# Holm's Test PR
lowest_rank_pr, no_rejected_pr, adjpvalues_pr = bonfholm_test(k, N, model_names_, df_ap_rank_mean_, 0.05, control=None)
## ROC-AUC
N = len(df_roc_.index)
k = len(df_roc_rank_mean_)
model_names_ = np.asarray(list(df_roc_rank_mean_.index))
imandavenport_test(k, N, df_roc_rank_mean_)
# Holm's Test PR
lowest_rankroc_, no_rejectedroc_, adjpvaluesroc_ = bonfholm_test(k, N, model_names_, df_roc_rank_mean_, 0.05, control=None)