-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_predictor.py
771 lines (575 loc) · 26.8 KB
/
test_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
"""Tests predictor collection"""
import mock
import pytest
import uuid
from copy import deepcopy
from citrine.exceptions import BadRequest, Conflict, ModuleRegistrationFailedException, NotFound
from citrine.informatics.data_sources import GemTableDataSource
from citrine.informatics.descriptors import RealDescriptor
from citrine.informatics.predictors import (
AutoMLPredictor,
ExpressionPredictor,
GraphPredictor,
SimpleMixturePredictor
)
from citrine.resources.predictor import PredictorCollection, _PredictorVersionCollection, AutoConfigureMode
from tests.conftest import build_predictor_entity
from tests.utils.session import (
FakeCall,
FakeRequestResponse,
FakeSession
)
from tests.utils.factories import (
AsyncDefaultPredictorResponseFactory, AsyncDefaultPredictorResponseMetadataFactory,
FeatureEffectsResponseFactory, TableDataSourceDataFactory
)
def paging_response(*items):
return {"response": items}
@pytest.fixture(scope='module')
def basic_predictor_report_data():
return {
'id': str(uuid.uuid4()),
'status': 'VALID',
'report': {'descriptors': [], 'models': []}
}
def test_build(valid_graph_predictor_data, basic_predictor_report_data):
session = FakeSession()
session.set_response(basic_predictor_report_data)
pc = PredictorCollection(uuid.uuid4(), session)
predictor = pc.build(valid_graph_predictor_data)
assert predictor.name == 'Graph predictor'
assert predictor.description == 'description'
def test_build_with_status(valid_graph_predictor_data, basic_predictor_report_data):
session = FakeSession()
session.set_response(basic_predictor_report_data)
status_detail_data = {("Info", "info_msg"), ("Warning", "warning msg"), ("Error", "error msg")}
data = deepcopy(valid_graph_predictor_data)
data["metadata"]["status"]["detail"] = [{"level": level, "msg": msg} for level, msg in status_detail_data]
pc = PredictorCollection(uuid.uuid4(), session)
predictor = pc.build(data)
status_detail_tuples = {(detail.level, detail.msg) for detail in predictor.status_detail}
assert status_detail_tuples == status_detail_data
def test_delete():
pc = PredictorCollection(uuid.uuid4(), mock.Mock())
with pytest.raises(NotImplementedError):
pc.delete(uuid.uuid4())
def test_delete_version():
pvc = _PredictorVersionCollection(uuid.uuid4(), FakeSession())
with pytest.raises(NotImplementedError):
pvc.delete(uuid.uuid4())
def test_archive_root(valid_graph_predictor_data):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
predictors_path = PredictorCollection._path_template.format(project_id=pc.project_id)
pred_id = valid_graph_predictor_data["id"]
session.set_response(None)
pc.archive_root(pred_id)
assert session.calls == [FakeCall(method='PUT', path=f"{predictors_path}/{pred_id}/archive", json={})]
def test_restore_root(valid_graph_predictor_data):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
predictors_path = PredictorCollection._path_template.format(project_id=pc.project_id)
pred_id = valid_graph_predictor_data["id"]
session.set_response(None)
pc.restore_root(pred_id)
assert session.calls == [FakeCall(method='PUT', path=f"{predictors_path}/{pred_id}/restore", json={})]
def test_root_is_archived(valid_graph_predictor_data):
predictor_id = uuid.UUID(valid_graph_predictor_data["id"])
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
session.set_response(paging_response(valid_graph_predictor_data))
assert pc.root_is_archived(predictor_id)
assert pc.root_is_archived(str(predictor_id))
assert not pc.root_is_archived(uuid.uuid4())
assert not pc.root_is_archived(str(uuid.uuid4()))
session.set_response(paging_response())
assert not pc.root_is_archived(predictor_id)
def test_graph_build(valid_graph_predictor_data, basic_predictor_report_data):
session = mock.Mock()
session.get_resource.return_value = basic_predictor_report_data
pc = PredictorCollection(uuid.uuid4(), session)
predictor = pc.build(valid_graph_predictor_data)
assert predictor.name == 'Graph predictor'
assert predictor.description == 'description'
assert len(predictor.predictors) == 5
assert len(predictor.training_data) == 1
def test_register(valid_graph_predictor_data):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
entity = deepcopy(valid_graph_predictor_data)
session.set_response(entity)
predictor = pc.build(entity)
predictors_path = f"/projects/{pc.project_id}/predictors"
expected_calls = [
FakeCall(method="POST", path=predictors_path, json=predictor.dump()),
FakeCall(method="PUT", path=f"{predictors_path}/{entity['id']}/train", params={"create_version": True}, json={}),
]
pc.register(predictor)
assert session.calls == expected_calls
def test_register_no_train(valid_graph_predictor_data):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
entity = deepcopy(valid_graph_predictor_data)
session.set_response(entity)
predictor = pc.build(entity)
predictors_path = f"/projects/{pc.project_id}/predictors"
expected_calls = [
FakeCall(method="POST", path=predictors_path, json=predictor.dump()),
]
pc.register(predictor, train=False)
assert session.calls == expected_calls
def test_graph_register(valid_graph_predictor_data):
pred_data = deepcopy(valid_graph_predictor_data)
session = FakeSession()
session.set_responses(deepcopy(valid_graph_predictor_data), pred_data)
pc = PredictorCollection(uuid.uuid4(), session)
predictor = GraphPredictor.build(valid_graph_predictor_data)
registered = pc.register(predictor)
assert registered.name == 'Graph predictor'
def test_failed_register(valid_graph_predictor_data):
session = mock.Mock()
session.post_resource.side_effect = NotFound("/projects/uuid/not_found",
FakeRequestResponse(400))
pc = PredictorCollection(uuid.uuid4(), session)
predictor = GraphPredictor.build(valid_graph_predictor_data)
with pytest.raises(ModuleRegistrationFailedException) as e:
pc.register(predictor)
assert 'The "GraphPredictor" failed to register.' in str(e.value)
assert '/projects/uuid/not_found' in str(e.value)
def test_update(valid_graph_predictor_data):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
entity = deepcopy(valid_graph_predictor_data)
session.set_response(entity)
predictor = pc.build(entity)
predictors_path = PredictorCollection._path_template.format(project_id=pc.project_id)
entity_path = f"{predictors_path}/{entity['id']}"
expected_calls = [
FakeCall(method="PUT", path=entity_path, json=predictor.dump()),
FakeCall(method="PUT", path=f"{entity_path}/train", params={"create_version": True}, json={}),
]
pc.update(predictor)
assert session.calls == expected_calls
def test_update_no_train(valid_graph_predictor_data):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
entity = deepcopy(valid_graph_predictor_data)
session.set_response(entity)
predictor = pc.build(entity)
predictors_path = PredictorCollection._path_template.format(project_id=pc.project_id)
entity_path = f"{predictors_path}/{entity['id']}"
expected_calls = [
FakeCall(method="PUT", path=entity_path, json=predictor.dump()),
]
pc.update(predictor, train=False)
assert session.calls == expected_calls
def test_register_update_checks_status(valid_graph_predictor_data):
# PredictorCollection.register/update makes two calls internally
# The first creates/updates the resource, the second kicks off training
# Test if create/update returns an INVALID status, we don't make the training call
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
instance = deepcopy(valid_graph_predictor_data)["data"]["instance"]
valid_entity = build_predictor_entity(instance)
invalid_entity = build_predictor_entity(
instance,
status_name="INVALID",
status_detail=[{"level": "Error", "msg": "AHH IT BURNSSSSS!!!!"}]
)
# Register returns first (invalid) response if failed
session.set_responses(invalid_entity, valid_entity)
register_input = pc.build(valid_entity)
register_output = pc.register(register_input)
assert register_output.failed()
assert session.num_calls == 1
# Update returns first (invalid) response if failed
session.set_responses(invalid_entity, valid_entity)
update_input = pc.build(valid_entity)
update_output = pc.update(update_input)
assert update_output.failed()
assert session.num_calls == 2
def test_train(valid_graph_predictor_data):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
entity = deepcopy(valid_graph_predictor_data)
session.set_response(entity)
predictor = pc.build(entity)
predictors_path = PredictorCollection._path_template.format(project_id=pc.project_id)
entity_path = f"{predictors_path}/{entity['id']}"
expected_calls = [
FakeCall(method="PUT", path=f"{entity_path}/train", params={"create_version": True}, json={}),
]
pc.train(predictor.uid)
assert session.calls == expected_calls
def test_list(valid_graph_predictor_data, valid_graph_predictor_data_empty):
# Given
session = FakeSession()
collection = PredictorCollection(uuid.uuid4(), session)
session.set_responses(
{
'response': [valid_graph_predictor_data, valid_graph_predictor_data_empty],
'page': 1,
'per_page': 25
},
basic_predictor_report_data,
basic_predictor_report_data
)
# When
predictors = list(collection.list(per_page=25))
# Then
expected_call = FakeCall(method='GET',
path='/projects/{}/predictors'.format(collection.project_id),
params={'per_page': 25, 'page': 1, 'archived': False})
assert 1 == session.num_calls, session.calls
assert expected_call == session.calls[0]
assert len(predictors) == 2
def test_list_all(valid_graph_predictor_data, valid_graph_predictor_data_empty):
# Given
session = FakeSession()
collection = PredictorCollection(uuid.uuid4(), session)
session.set_responses(
{'response': [valid_graph_predictor_data, valid_graph_predictor_data_empty]},
basic_predictor_report_data,
basic_predictor_report_data
)
# When
predictors = list(collection.list_all(per_page=25))
# Then
expected_call = FakeCall(method='GET',
path='/projects/{}/predictors'.format(collection.project_id),
params={'per_page': 25, 'page': 1})
assert 1 == session.num_calls, session.calls
assert expected_call == session.calls[0]
assert len(predictors) == 2
def test_list_archived(valid_graph_predictor_data):
# Given
session = FakeSession()
session.set_response({'response': [valid_graph_predictor_data]})
pc = PredictorCollection(uuid.uuid4(), session)
# When
list(pc.list_archived())
# Then
assert session.num_calls == 1
assert session.last_call == FakeCall(method='GET',
path=f"/projects/{pc.project_id}/predictors",
params={'per_page': 20, 'page': 1, 'archived': True})
def test_get(valid_graph_predictor_data):
# Given
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
entity = valid_graph_predictor_data
session.set_responses(entity)
id = uuid.uuid4()
version = 4
# When
pc.get(id, version=version)
# Then
expected_call = FakeCall(
method='GET',
path=f'/projects/{pc.project_id}/predictors/{id}/versions/{version}',
params={}
)
assert session.num_calls == 1
assert expected_call == session.last_call
def test_get_none():
"""Trying to get a predictor with uid=None should result in an informative error."""
pc = PredictorCollection(uuid.uuid4(), FakeSession())
with pytest.raises(ValueError) as excinfo:
pc.get(uid=None)
assert "uid=None" in str(excinfo.value)
def test_check_update_none():
"""Test that check-for-updates makes the expected calls, parses output for no update."""
# Given
session = FakeSession()
session.set_response({"updatable": False})
pc = PredictorCollection(uuid.uuid4(), session)
predictor_id = uuid.uuid4()
# when
update_check = pc.check_for_update(predictor_id)
# then
assert update_check is None
expected_call = FakeCall(method='GET', path='/projects/{}/predictors/{}/update-check'.format(pc.project_id, predictor_id))
assert session.calls[0] == expected_call
def test_check_update_some():
"""Test the update check correctly builds a module."""
# given
session = FakeSession()
desc = RealDescriptor("spam", lower_bound=0, upper_bound=1, units="kg")
response = GraphPredictor.wrap_instance({
"type": "Graph",
"name": "foo",
"description": "bar",
"predictors": [
{
"type": "AnalyticExpression",
"name": "foo",
"description": "bar",
"expression": "2 * x",
"output": RealDescriptor("spam", lower_bound=0, upper_bound=1, units="kg").dump(),
"aliases": {}
}
]
})
session.set_responses({"updatable": True, **response})
pc = PredictorCollection(uuid.uuid4(), session)
predictor_id = uuid.uuid4()
# when
update_check = pc.check_for_update(predictor_id)
# then
assert pc._api_version == 'v3'
exp = ExpressionPredictor("foo", description="bar", expression="2 * x", output=desc, aliases={})
expected = GraphPredictor(
name="foo",
description="bar",
predictors=[exp]
)
assert update_check.dump() == expected.dump()
assert update_check.uid == predictor_id
def test_unexpected_pattern():
"""Check that unexpected patterns result in a value error"""
# Given
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
# Then
with pytest.raises(ValueError):
pc.create_default(training_data=GemTableDataSource(table_id=uuid.uuid4(), table_version=0), pattern="yogurt")
with pytest.raises(ValueError):
pc.create_default_async(training_data=GemTableDataSource(table_id=uuid.uuid4(), table_version=0), pattern="yogurt")
def test_create_default_mode_pattern(valid_graph_predictor_data):
"""Check that using AutoConfigureMode doesn't result in an error"""
# Given
session = FakeSession()
# Setup a response that includes instance instead of config
response = deepcopy(valid_graph_predictor_data)
session.set_response(response["data"])
pc = PredictorCollection(uuid.uuid4(), session)
# When
pc.create_default(training_data=GemTableDataSource(table_id=uuid.uuid4(), table_version=0), pattern=AutoConfigureMode.INFER)
# Then
assert (session.calls[0].json['pattern'] == "INFER")
assert (session.calls[0].json['prefer_valid'] == True)
def test_returned_predictor(valid_graph_predictor_data):
"""Check that create_default works on the happy path."""
# Given
session = FakeSession()
# Setup a response that includes instance instead of config
response = deepcopy(valid_graph_predictor_data)["data"]
session.set_responses(response)
pc = PredictorCollection(uuid.uuid4(), session)
# When
result = pc.create_default(training_data=GemTableDataSource(table_id=uuid.uuid4(), table_version=0), pattern="PLAIN")
# Then the response is parsed in a predictor
assert result.name == valid_graph_predictor_data["data"]["name"]
assert isinstance(result, GraphPredictor)
# including nested predictors
assert len(result.predictors) == 5
assert isinstance(result.predictors[0], SimpleMixturePredictor)
assert isinstance(result.predictors[-1], AutoMLPredictor)
def test_list_versions(valid_graph_predictor_data):
# Given
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
pred_id = valid_graph_predictor_data["id"]
predictor_v1 = deepcopy(valid_graph_predictor_data)
predictor_v1["metadata"]["draft"] = False
predictor_v2 = deepcopy(valid_graph_predictor_data)
predictor_v2["metadata"]["version"] = 2
versions_path = _PredictorVersionCollection._path_template.format(project_id=pc.project_id, uid=pred_id)
session.set_response(paging_response(predictor_v1, predictor_v2))
# When
listed_predictors = list(pc.list_versions(pred_id, per_page=20))
# Then
assert session.calls == [FakeCall(method='GET', path=versions_path, params={'per_page': 20, 'page': 1})]
assert len(listed_predictors) == 2
def test_list_archived_versions(valid_graph_predictor_data):
# Given
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
pred_id = valid_graph_predictor_data["id"]
predictor_v1 = deepcopy(valid_graph_predictor_data)
predictor_v1["metadata"]["draft"] = False
predictor_v2 = deepcopy(valid_graph_predictor_data)
predictor_v2["metadata"]["version"] = 2
versions_path = _PredictorVersionCollection._path_template.format(project_id=pc.project_id, uid=pred_id)
session.set_response(paging_response(predictor_v1, predictor_v2))
# When
listed_predictors = list(pc.list_archived_versions(pred_id, per_page=20))
# Then
expected_params = {'per_page': 20, "filter": "archived eq 'true'", 'page': 1}
assert session.calls == [FakeCall(method='GET', path=versions_path, params=expected_params)]
assert len(listed_predictors) == 2
@pytest.mark.parametrize("version", (2, "1", "latest", "most_recent"))
def test_archive_version(valid_graph_predictor_data, version):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
pred_id = valid_graph_predictor_data["id"]
versions_path = _PredictorVersionCollection._path_template.format(project_id=pc.project_id, uid=pred_id)
session.set_response(valid_graph_predictor_data)
pc.archive_version(pred_id, version=version)
assert session.calls == [FakeCall(method='PUT', path=f"{versions_path}/{version}/archive", json={})]
@pytest.mark.parametrize("version", (2, "1", "latest", "most_recent"))
def test_restore_version(valid_graph_predictor_data, version):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
pred_id = valid_graph_predictor_data["id"]
versions_path = _PredictorVersionCollection._path_template.format(project_id=pc.project_id, uid=pred_id)
session.set_response(valid_graph_predictor_data)
pc.restore_version(pred_id, version=version)
assert session.calls == [FakeCall(method='PUT', path=f"{versions_path}/{version}/restore", json={})]
@pytest.mark.parametrize("version", (-2, 0, "1.5", "draft"))
def test_archive_invalid_version(valid_graph_predictor_data, version):
session = FakeSession()
session.set_response(valid_graph_predictor_data)
pc = PredictorCollection(uuid.uuid4(), session)
with pytest.raises(ValueError):
pc.archive_version(uuid.uuid4(), version=version)
@pytest.mark.parametrize("version", (-2, 0, "1.5", "draft"))
def test_restore_invalid_version(valid_graph_predictor_data, version):
session = FakeSession()
session.set_response(valid_graph_predictor_data)
pc = PredictorCollection(uuid.uuid4(), session)
with pytest.raises(ValueError):
pc.restore_version(uuid.uuid4(), version=version)
@pytest.mark.parametrize("is_stale", (True, False))
def test_is_stale(valid_graph_predictor_data, is_stale):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
pred_id = valid_graph_predictor_data["id"]
pred_version = valid_graph_predictor_data["metadata"]["version"]
response = {
"id": pred_id,
"version": pred_version,
"status": "READY",
"is_stale": is_stale
}
session.set_response(response)
resp = pc.is_stale(pred_id, version=pred_version)
versions_path = _PredictorVersionCollection._path_template.format(project_id=pc.project_id, uid=pred_id)
assert session.calls == [FakeCall(method='GET', path=f"{versions_path}/{pred_version}/is-stale")]
assert resp == is_stale
def test_retrain_stale(valid_graph_predictor_data):
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
pred_id = valid_graph_predictor_data["id"]
pred_version = valid_graph_predictor_data["metadata"]["version"]
response = deepcopy(valid_graph_predictor_data)
response["metadata"]["status"]["name"] = "VALIDATING"
response["metadata"]["status"]["detail"] = []
session.set_response(response)
pc.retrain_stale(pred_id, version=pred_version)
versions_path = _PredictorVersionCollection._path_template.format(project_id=pc.project_id, uid=pred_id)
assert session.calls == [FakeCall(method='PUT', path=f"{versions_path}/{pred_version}/retrain-stale", json={})]
def test_unsupported_archive():
with pytest.raises(NotImplementedError):
PredictorCollection(uuid.uuid4(), FakeSession()).archive(uuid.uuid4())
def test_unsupported_restore():
with pytest.raises(NotImplementedError):
PredictorCollection(uuid.uuid4(), FakeSession()).restore(uuid.uuid4())
def test_create_default_async():
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
predictors_path = PredictorCollection._path_template.format(project_id=pc.project_id)
mode = "PLAIN"
prefer_valid = False
ds = GemTableDataSource(table_id=uuid.uuid4(), table_version=1)
data_source_payload = TableDataSourceDataFactory(table_id=str(ds.table_id), table_version=ds.table_version)
expected_payload = {
"data_source": data_source_payload,
"pattern": mode,
"prefer_valid": prefer_valid
}
metadata = AsyncDefaultPredictorResponseMetadataFactory(data_source=data_source_payload)
session.set_response(AsyncDefaultPredictorResponseFactory(metadata=metadata, data=None))
pc.create_default_async(training_data=ds, pattern=mode, prefer_valid=prefer_valid)
assert session.calls == [FakeCall(method="POST", path=f"{predictors_path}/default-async", json=expected_payload)]
def test_get_default_async(valid_graph_predictor_data):
instance = valid_graph_predictor_data["data"]["instance"]
# Given
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
response = AsyncDefaultPredictorResponseFactory()
response["data"]["instance"] = instance
session.set_response(response)
# When
result = pc.get_default_async(task_id=response["id"])
# Then the response is parsed in a predictor
assert str(result.uid) == response["id"]
assert result.status == response["metadata"]["status"]
assert result.status_detail == response["metadata"]["status_detail"]
assert result.predictor is not None
assert result.predictor.predictors
assert len(result.predictor.predictors) == len(instance["predictors"])
def test_get_featurized_training_data(example_hierarchical_design_material):
# Given
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
session.set_responses([example_hierarchical_design_material])
id = uuid.uuid4()
version = 4
# When
materials = pc.get_featurized_training_data(id, version=version)
# Then
expected_call = FakeCall(
method='GET',
path=f'/projects/{pc.project_id}/predictors/{id}/versions/{version}/featurized-training-data',
params={}
)
assert session.num_calls == 1
assert expected_call == session.last_call
assert len(materials) == 1
def test_rename(valid_graph_predictor_data):
pred_id = valid_graph_predictor_data["id"]
pred_version = valid_graph_predictor_data["metadata"]["version"]
# Given
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
new_name = "a new name"
new_description = "this new name is much better"
# When
session.set_response(valid_graph_predictor_data)
pc.rename(pred_id, version=pred_version, name=new_name, description=new_description)
# Then
versions_path = _PredictorVersionCollection._path_template.format(project_id=pc.project_id, uid=pred_id)
expected_payload = {"name": new_name, "description": new_description}
assert session.calls == [FakeCall(method="PUT", path=f"{versions_path}/{pred_version}/rename", json=expected_payload)]
def test_rename_name_only(valid_graph_predictor_data):
pred_id = valid_graph_predictor_data["id"]
pred_version = valid_graph_predictor_data["metadata"]["version"]
# Given
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
new_name = "a new name"
# When
session.set_response(valid_graph_predictor_data)
pc.rename(pred_id, version=pred_version, name=new_name)
# Then
versions_path = _PredictorVersionCollection._path_template.format(project_id=pc.project_id, uid=pred_id)
expected_payload = {"name": new_name, "description": None}
assert session.calls == [FakeCall(method="PUT", path=f"{versions_path}/{pred_version}/rename", json=expected_payload)]
def test_rename_description_only(valid_graph_predictor_data):
pred_id = valid_graph_predictor_data["id"]
pred_version = valid_graph_predictor_data["metadata"]["version"]
# Given
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
new_description = "this new name is much better"
# When
session.set_response(valid_graph_predictor_data)
pc.rename(pred_id, version=pred_version, description=new_description)
# Then
versions_path = _PredictorVersionCollection._path_template.format(project_id=pc.project_id, uid=pred_id)
expected_payload = {"name": None, "description": new_description}
assert session.calls == [FakeCall(method="PUT", path=f"{versions_path}/{pred_version}/rename", json=expected_payload)]
def test_generate_shapley(valid_graph_predictor_data):
pred_id = valid_graph_predictor_data["id"]
pred_version = valid_graph_predictor_data["metadata"]["version"]
session = FakeSession()
pc = PredictorCollection(uuid.uuid4(), session)
fe_response = FeatureEffectsResponseFactory(metadata__status="INPROGRESS", result=None)
session.set_responses(fe_response, valid_graph_predictor_data)
versions_path = _PredictorVersionCollection._path_template.format(project_id=pc.project_id, uid=pred_id)
pred = pc.generate_feature_effects_async(pred_id, version=pred_version)
assert session.calls == [
FakeCall(method="PUT", path=f"{versions_path}/{pred_version}/shapley/generate", json={}),
FakeCall(method="GET", path=f"{versions_path}/{pred_version}")
]