-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdata_layouts_threadblock.jl
216 lines (194 loc) · 7.72 KB
/
data_layouts_threadblock.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
const CI5 = CartesianIndex{5}
maximum_allowable_threads() = (
CUDA.attribute(CUDA.device(), CUDA.DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X),
CUDA.attribute(CUDA.device(), CUDA.DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y),
CUDA.attribute(CUDA.device(), CUDA.DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z),
)
"""
partition(::AbstractData, n_max_threads)
Given `n_max_threads`, which should be determined
from CUDA's occupancy API, `partition` returns
a NamedTuple containing:
- `threads` size of threads to pass to CUDA
- `blocks` size of blocks to pass to CUDA
The general pattern followed here, which seems
to produce good results, is to satisfy a few
criteria:
- Maximize the number of (allowable) threads
in the thread partition
- The order of the thread partition should
follow the fastest changing index in the
datalayout (e.g., VIJ in VIJFH)
"""
function partition end
"""
universal_index(::AbstractData)
Returns a universal cartesian index,
computed from CUDA's `threadIdx`,
`blockIdx` and `blockDim`.
"""
function universal_index end
"""
is_valid_index(::AbstractData, I::CartesianIndex, us::UniversalSize)
Check the minimal number of index
bounds to ensure that the result of
`universal_index` is valid.
"""
function is_valid_index end
##### VIJFH
@inline function partition(data::DataLayouts.VIJFH, n_max_threads::Integer)
(Nij, _, _, Nv, Nh) = DataLayouts.universal_size(data)
Nv_thread = min(Int(fld(n_max_threads, Nij * Nij)), Nv)
Nv_blocks = cld(Nv, Nv_thread)
@assert prod((Nv_thread, Nij, Nij)) ≤ n_max_threads "threads,n_max_threads=($(prod((Nv_thread, Nij, Nij))),$n_max_threads)"
return (; threads = (Nv_thread, Nij, Nij), blocks = (Nv_blocks, Nh))
end
@inline function universal_index(::DataLayouts.VIJFH)
(tv, i, j) = CUDA.threadIdx()
(bv, h) = CUDA.blockIdx()
v = tv + (bv - 1) * CUDA.blockDim().x
return CartesianIndex((i, j, 1, v, h))
end
@inline is_valid_index(::DataLayouts.VIJFH, I::CI5, us::UniversalSize) =
1 ≤ I[4] ≤ DataLayouts.get_Nv(us)
##### IJFH
@inline function partition(data::DataLayouts.IJFH, n_max_threads::Integer)
(Nij, _, _, _, Nh) = DataLayouts.universal_size(data)
Nh_thread = min(
Int(fld(n_max_threads, Nij * Nij)),
Nh,
maximum_allowable_threads()[3],
)
Nh_blocks = cld(Nh, Nh_thread)
@assert prod((Nij, Nij)) ≤ n_max_threads "threads,n_max_threads=($(prod((Nij, Nij))),$n_max_threads)"
return (; threads = (Nij, Nij, Nh_thread), blocks = (Nh_blocks,))
end
@inline function universal_index(::DataLayouts.IJFH)
(i, j, th) = CUDA.threadIdx()
(bh,) = CUDA.blockIdx()
h = th + (bh - 1) * CUDA.blockDim().z
return CartesianIndex((i, j, 1, 1, h))
end
@inline is_valid_index(::DataLayouts.IJFH, I::CI5, us::UniversalSize) =
1 ≤ I[5] ≤ DataLayouts.get_Nh(us)
##### IFH
@inline function partition(data::DataLayouts.IFH, n_max_threads::Integer)
(Ni, _, _, _, Nh) = DataLayouts.universal_size(data)
Nh_thread = min(Int(fld(n_max_threads, Ni)), Nh)
Nh_blocks = cld(Nh, Nh_thread)
@assert prod((Ni, Nh_thread)) ≤ n_max_threads "threads,n_max_threads=($(prod((Ni, Nh_thread))),$n_max_threads)"
return (; threads = (Ni, Nh_thread), blocks = (Nh_blocks,))
end
@inline function universal_index(::DataLayouts.IFH)
(i, th) = CUDA.threadIdx()
(bh,) = CUDA.blockIdx()
h = th + (bh - 1) * CUDA.blockDim().y
return CartesianIndex((i, 1, 1, 1, h))
end
@inline is_valid_index(::DataLayouts.IFH, I::CI5, us::UniversalSize) =
1 ≤ I[5] ≤ DataLayouts.get_Nh(us)
##### IJF
@inline function partition(data::DataLayouts.IJF, n_max_threads::Integer)
(Nij, _, _, _, _) = DataLayouts.universal_size(data)
@assert prod((Nij, Nij)) ≤ n_max_threads "threads,n_max_threads=($(prod((Nij, Nij))),$n_max_threads)"
return (; threads = (Nij, Nij), blocks = (1,))
end
@inline function universal_index(::DataLayouts.IJF)
(i, j) = CUDA.threadIdx()
return CartesianIndex((i, j, 1, 1, 1))
end
@inline is_valid_index(::DataLayouts.IJF, I::CI5, us::UniversalSize) = true
##### IF
@inline function partition(data::DataLayouts.IF, n_max_threads::Integer)
(Ni, _, _, _, _) = DataLayouts.universal_size(data)
@assert Ni ≤ n_max_threads "threads,n_max_threads=($(Ni),$n_max_threads)"
return (; threads = (Ni,), blocks = (1,))
end
@inline function universal_index(::DataLayouts.IF)
(i,) = CUDA.threadIdx()
return CartesianIndex((i, 1, 1, 1, 1))
end
@inline is_valid_index(::DataLayouts.IF, I::CI5, us::UniversalSize) = true
##### VIFH
@inline function partition(data::DataLayouts.VIFH, n_max_threads::Integer)
(Ni, _, _, Nv, Nh) = DataLayouts.universal_size(data)
Nv_thread = min(Int(fld(n_max_threads, Ni)), Nv)
Nv_blocks = cld(Nv, Nv_thread)
@assert prod((Nv_thread, Ni)) ≤ n_max_threads "threads,n_max_threads=($(prod((Nv_thread, Ni))),$n_max_threads)"
return (; threads = (Nv_thread, Ni), blocks = (Nv_blocks, Nh))
end
@inline function universal_index(::DataLayouts.VIFH)
(tv, i) = CUDA.threadIdx()
(bv, h) = CUDA.blockIdx()
v = tv + (bv - 1) * CUDA.blockDim().x
return CartesianIndex((i, 1, 1, v, h))
end
@inline is_valid_index(::DataLayouts.VIFH, I::CI5, us::UniversalSize) =
1 ≤ I[4] ≤ DataLayouts.get_Nv(us)
##### VF
@inline function partition(data::DataLayouts.VF, n_max_threads::Integer)
(_, _, _, Nv, _) = DataLayouts.universal_size(data)
Nvt = fld(n_max_threads, Nv)
Nv_thread = Nvt == 0 ? n_max_threads : min(Int(Nvt), Nv)
Nv_blocks = cld(Nv, Nv_thread)
@assert Nv_thread ≤ n_max_threads "threads,n_max_threads=($(Nv_thread),$n_max_threads)"
(; threads = (Nv_thread,), blocks = (Nv_blocks,))
end
@inline function universal_index(::DataLayouts.VF)
(tv,) = CUDA.threadIdx()
(bv,) = CUDA.blockIdx()
v = tv + (bv - 1) * CUDA.blockDim().x
return CartesianIndex((1, 1, 1, v, 1))
end
@inline is_valid_index(::DataLayouts.VF, I::CI5, us::UniversalSize) =
1 ≤ I[4] ≤ DataLayouts.get_Nv(us)
##### DataF
@inline partition(data::DataLayouts.DataF, n_max_threads::Integer) =
(; threads = 1, blocks = 1)
@inline universal_index(::DataLayouts.DataF) = CartesianIndex((1, 1, 1, 1, 1))
@inline is_valid_index(::DataLayouts.DataF, I::CI5, us::UniversalSize) = true
#####
##### Custom partitions
#####
##### Column-wise
@inline function columnwise_partition(
us::DataLayouts.UniversalSize,
n_max_threads::Integer,
)
(Nij, _, _, _, Nh) = DataLayouts.universal_size(us)
Nh_thread = min(
Int(fld(n_max_threads, Nij * Nij)),
maximum_allowable_threads()[3],
Nh,
)
Nh_blocks = cld(Nh, Nh_thread)
@assert prod((Nij, Nij, Nh_thread)) ≤ n_max_threads "threads,n_max_threads=($(prod((Nij, Nij, Nh_thread))),$n_max_threads)"
return (; threads = (Nij, Nij, Nh_thread), blocks = (Nh_blocks,))
end
@inline function columnwise_universal_index()
(i, j, th) = CUDA.threadIdx()
(bh,) = CUDA.blockIdx()
h = th + (bh - 1) * CUDA.blockDim().z
return CartesianIndex((i, j, 1, 1, h))
end
@inline columnwise_is_valid_index(I::CI5, us::UniversalSize) =
1 ≤ I[5] ≤ DataLayouts.get_Nh(us)
##### Element-wise (e.g., limiters)
# TODO
##### Multiple-field solve partition
@inline function multiple_field_solve_partition(
us::DataLayouts.UniversalSize,
n_max_threads::Integer;
Nnames,
)
(Nij, _, _, _, Nh) = DataLayouts.universal_size(us)
@assert prod((Nij, Nij, Nnames)) ≤ n_max_threads "threads,n_max_threads=($(prod((Nij, Nij, Nnames))),$n_max_threads)"
return (; threads = (Nij, Nij, Nnames), blocks = (Nh,))
end
@inline function multiple_field_solve_universal_index()
(i, j, iname) = CUDA.threadIdx()
(h,) = CUDA.blockIdx()
return (CartesianIndex((i, j, 1, 1, h)), iname)
end
@inline multiple_field_solve_is_valid_index(I::CI5, us::UniversalSize) =
1 ≤ I[5] ≤ DataLayouts.get_Nh(us)