-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcl-dominator.lisp
711 lines (651 loc) · 31.1 KB
/
cl-dominator.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
(cl:defpackage :cl-dominator
(:use :cl))
(cl:in-package :cl-dominator)
(defclass node ()
((name
:accessor name
:initform 'anonymous
:initarg :name
:type symbol)
(successors
:accessor successors
:initarg :successors
:initform nil
:type list)
(predecessors
:accessor predecessors
:initarg :predecessors
:initform nil
:type list)))
(defun make-node (&key name successors predecessors)
(make-instance 'node
:name name
:successors successors
:predecessors predecessors))
(defclass graph ()
((nodes
:accessor nodes
:initform nil
:type list)
(num-of-nodes
:accessor num-of-nodes
:initform 0
:type integer)))
(defmethod print-object ((node node) stream)
(print-unreadable-object (node stream :type t :identity t)
(princ (name node) stream)))
(defun make-graph ()
(make-instance 'graph))
(defun add-node (graph node)
(push node (nodes graph))
(incf (num-of-nodes graph))
graph)
(defun remove-node (graph node)
;; TODO linear search is slow
(when (member node (nodes graph))
(dolist (predecessor (predecessors node))
(setf (successors predecessor) (delete node (successors predecessor))))
(dolist (successor (successors node))
(setf (predecessors successor) (delete node (predecessors successor))))
(setf (nodes graph) (delete node (nodes graph)))
(decf (num-of-nodes graph)))
graph)
(defun make-graph-node (graph &rest args)
(let ((node (apply #'make-node args)))
(add-node graph node)
node))
(defun link-nodes (node-1 node-2)
(push node-2 (successors node-1))
(push node-1 (predecessors node-2))
(values))
(defclass flow-graph (graph)
((entry
:accessor entry
:initform (error "Must supply a entry node")
:initarg :entry
:type node)))
(defun make-flow-graph (&optional entry)
(let* ((entry (or entry (make-node :name 'entry)))
(flow-graph (make-instance 'flow-graph :entry entry)))
(add-node flow-graph entry)
flow-graph))
(defun graph->graphviz (graph &optional (stream t))
(let ((visited (make-hash-table)))
(labels ((print-node (node)
(setf (gethash node visited) t)
(cond ((and (null (successors node))
(null (predecessors node)))
(format stream " \"~A\"~%" (name node)))
(t
(dolist (succ (successors node))
(format stream " \"~A\" -> \"~A\"~%"
(name node) (name succ))
(unless (gethash succ visited)
(print-node succ)))))))
(format stream "digraph G {~%")
(dolist (node (nodes graph))
(unless (gethash node visited)
(print-node node)))
(format stream "}~%"))))
(defvar *node-0* (make-node :name 'node-0))
(defvar *flow-graph* (make-flow-graph *node-0*))
(defvar *node-1* (make-graph-node *flow-graph* :name 'node-1))
(defvar *node-2* (make-graph-node *flow-graph* :name 'node-2))
(defvar *node-3* (make-graph-node *flow-graph* :name 'node-3))
(defvar *node-4* (make-graph-node *flow-graph* :name 'node-4))
(defvar *node-5* (make-graph-node *flow-graph* :name 'node-5))
(defvar *node-6* (make-graph-node *flow-graph* :name 'node-6))
(defvar *node-7* (make-graph-node *flow-graph* :name 'node-7))
(defvar *node-8* (make-graph-node *flow-graph* :name 'node-8))
(link-nodes *node-0* *node-1*)
(link-nodes *node-1* *node-2*)
(link-nodes *node-1* *node-5*)
(link-nodes *node-2* *node-3*)
(link-nodes *node-5* *node-6*)
(link-nodes *node-5* *node-8*)
(link-nodes *node-6* *node-7*)
(link-nodes *node-8* *node-7*)
(link-nodes *node-7* *node-3*)
(link-nodes *node-3* *node-4*)
(defclass hash-set ()
((table
:accessor table
:initform (error "Must supply a table")
:initarg :table)
(test
:accessor test
:initform (error "Must supply the test function of the table")
:initarg :test)))
(defun make-hash-set (&key (test #'equal))
(make-instance 'hash-set
:table (make-hash-table :test test)
:test test))
(defun hash-set-count (hash-set)
(hash-table-count (table hash-set)))
(defun hash-set-add (hash-set element)
(setf (gethash element (table hash-set)) t)
hash-set)
(defun hash-set-remove (hash-set element)
(remhash element (table hash-set))
hash-set)
(defun hash-set-exists (hash-set element)
(gethash element (table hash-set)))
(defmacro do-hash-set ((var hash-set-form) &body body)
(let ((body-fn-var (gensym "body-fn"))
(element-var (gensym "element"))
(value-var (gensym "value")))
`(let ((,body-fn-var (lambda (,var) ,@body)))
(maphash (lambda (,element-var ,value-var)
(declare (ignore ,value-var))
(funcall ,body-fn-var ,element-var))
(table ,hash-set-form)))))
;; It seems not a good idea to specialize on `print-object',
;; the number of hash-set elements may be large.
(defun print-hash-set (hash-set &optional (stream t))
(format stream "{")
(let ((first t))
(do-hash-set (element hash-set)
(unless first (format stream " "))
(prin1 element stream)
(setf first nil)))
(format stream "}"))
(defun hash-set-copy (hash-set)
(let ((result (make-hash-set)))
(do-hash-set (element hash-set)
(hash-set-add result element))
result))
(defun hash-set-difference (hash-set-1 hash-set-2)
(let ((result (make-hash-set :test (test hash-set-1))))
(do-hash-set (element hash-set-1)
(unless (hash-set-exists hash-set-2 element)
(hash-set-add result element)))
result))
(defun hash-set-intersection (hash-set-1 hash-set-2)
"Returns the intersection of two hash-sets."
(let ((result (make-hash-set :test (test hash-set-1))))
(do-hash-set (element hash-set-1)
(when (hash-set-exists hash-set-2 element)
(hash-set-add result element)))
result))
(defun special-hash-set-intersection (hash-set-1 hash-set-2)
"Just like `hash-set-intersection', but treat nil as universal set.
We treat nil as universal set so that some algorithms
don't need to construct universal set explicitly,
which is costly for large flow graphs.
Note that the return value may be nil if the result of intersection is
the universal set."
(cond ((and (null hash-set-1) (null hash-set-2)) nil)
((or (null hash-set-1) (null hash-set-2))
(or hash-set-1 hash-set-2))
(t (let ((result (make-hash-set :test (test hash-set-1))))
(do-hash-set (element hash-set-1)
(when (hash-set-exists hash-set-2 element)
(hash-set-add result element)))
result))))
(defun hash-set-intersection* (&rest hash-sets)
(if (null hash-sets)
(make-hash-set)
(reduce (lambda (acc hash-set)
(hash-set-intersection acc hash-set))
(rest hash-sets)
:initial-value (hash-set-copy (first hash-sets)))))
(defun special-hash-set-intersection* (&rest hash-sets)
(if (null hash-sets)
(make-hash-set)
(reduce (lambda (acc hash-set)
(special-hash-set-intersection acc hash-set))
(rest hash-sets)
:initial-value (when (first hash-sets) (hash-set-copy (first hash-sets))))))
(defun hash-set-notany (hash-set predicate &optional ignore)
(block nil
(do-hash-set (element hash-set)
(when (and (or (null ignore)
(not (funcall ignore element)))
(funcall predicate element))
(return nil)))
t))
(defun hash-set-every (hash-set predicate &optional ignore)
(block nil
(do-hash-set (element hash-set)
(when (and (or (null ignore)
(not (funcall ignore element)))
(not (funcall predicate element)))
(return nil)))
t))
(defun hash-set-equal (hash-set-1 hash-set-2)
(and (eql (hash-set-count hash-set-1)
(hash-set-count hash-set-2))
(hash-set-every hash-set-1
(lambda (element)
(hash-set-exists hash-set-2 element)))))
(defun depth-first-search-default-fn (node tree-parent)
(declare (ignore node tree-parent))
nil)
(defun depth-first-search-default-skip-fn (node tree-parent)
(declare (ignore node tree-parent))
nil)
(defun depth-first-search (start-node
&key
(preorder-fn #'depth-first-search-default-fn)
(postorder-fn #'depth-first-search-default-fn)
(skip-fn #'depth-first-search-default-skip-fn))
(let ((visited (make-hash-set)))
(labels ((rec (node tree-parent)
(hash-set-add visited node)
(funcall preorder-fn node tree-parent)
(dolist (succ (successors node))
(unless (or (hash-set-exists visited succ)
(funcall skip-fn succ node))
(rec succ node)))
(funcall postorder-fn node tree-parent)))
(unless (funcall skip-fn start-node nil)
(rec start-node nil)))
visited))
(defun reachable (start-node &optional skip-node)
(if (eql start-node skip-node)
(hash-set-add (make-hash-set) start-node)
(depth-first-search
start-node
:skip-fn (lambda (node tree-parent)
(declare (ignore tree-parent))
(eql node skip-node)))))
(defun nodes-in-reverse-postorder (start-node)
(let ((nodes nil))
(depth-first-search
start-node
:postorder-fn (lambda (node tree-parent)
(declare (ignore tree-parent))
(push node nodes)))
nodes))
(defun list-with-index-table (list)
(let ((indexes (make-hash-table))
(index 0))
(dolist (e list)
(setf (gethash e indexes) index)
(incf index))
(values list indexes)))
(defun nodes-in-reverse-postorder-with-rpo-nums (start-node)
(list-with-index-table (nodes-in-reverse-postorder start-node)))
(defun verify-flow-graph (flow-graph &optional (allow-link-to-entry t))
"Verify whether the FLOW-GRAPH is valid, signals an error if it's invalid.
A FLOW-GRAPH is valid if and only if the following conditions are true:
1. Every nodes of FLOW-GRAPH is reachabled from the entry node.
2. If ALLOW-LINK-TO-ENTRY is nil, there are no nodes link to the entry node."
(unless allow-link-to-entry
(assert (null (predecessors (entry flow-graph)))))
(let ((reachable (reachable (entry flow-graph))))
(every (lambda (node) (hash-set-exists reachable node))
(nodes flow-graph)))
(values))
(verify-flow-graph *flow-graph* nil)
(defun dominator-purdom (flow-graph)
"Compute the dominators of each node within the FLOW-GRAPH
using the Purdom algorithm.
The result is returned as a hash-table, with nodes of FLOW-GRAPH
as key and corresponding dominators as values.
Each node's dominators is stored as a hash-set."
(let ((result (make-hash-table)))
(dolist (node (nodes flow-graph))
(setf (gethash node result) (make-hash-set)))
(hash-set-add (gethash (entry flow-graph) result) (entry flow-graph))
(dolist (node (nodes flow-graph))
(let ((reachable-before (reachable (entry flow-graph)))
(reachable-after (reachable (entry flow-graph) node)))
(do-hash-set (node-2 (hash-set-difference reachable-before
reachable-after))
(hash-set-add (gethash node-2 result) node))))
result))
(defun dominator-iterative (flow-graph &key verify-flow-graph)
"Compute the dominators of each node within the FLOW-GRAPH
using the iterative algorithm.
The format of the result is the same as `dominator-purdom'."
;; Verify the flow-graph, the iterative algorithm doesn't allow the
;; entry node has any predecessors.
(when verify-flow-graph (verify-flow-graph flow-graph nil))
(do ((doms-table
(let ((doms-table (make-hash-table))
(entry (entry flow-graph))
(hash-set (make-hash-set)))
(hash-set-add hash-set entry)
(setf (gethash entry doms-table) hash-set)
doms-table))
(changed t))
((not changed) doms-table)
(setf changed nil)
(dolist (node (nodes-in-reverse-postorder (entry flow-graph)))
(let ((new-doms (apply #'special-hash-set-intersection*
(mapcar (lambda (node) (gethash node doms-table))
(predecessors node)))))
(hash-set-add new-doms node)
(when (let ((old-doms (gethash node doms-table)))
(or (null old-doms) (not (hash-set-equal new-doms old-doms))))
(setf (gethash node doms-table) new-doms)
(setf changed t))))))
(defun dominator-cooper (flow-graph &key verify-flow-graph)
"Compute the dominators of each node within the FLOW-GRAPH
using the Cooper algorithm.
The result is returned as a hash-table, with nodes of FLOW-GRAPH
as key and corresponding immediate dominator as values.
Note that the entry node will always exist as a key,
and its value will be nil."
(when verify-flow-graph (verify-flow-graph flow-graph nil))
(do ((idoms-table
(let ((idoms-table (make-hash-table))
(entry (entry flow-graph)))
;; Set the immediate dominator of entry to be itself to
;; simplify the implementation, we will set entry's
;; immediate dominator to nil in the end.
(setf (gethash entry idoms-table) entry)
idoms-table))
(changed t))
((not changed)
(setf (gethash (entry flow-graph) idoms-table) nil)
idoms-table)
(labels ((intersection-by-rpo-nums (idoms-table rpo-nums node-1 node-2)
(do* ((head-1 node-1)
(head-2 node-2)
(head-1-rpo-num
(gethash head-1 rpo-nums)
(gethash head-1 rpo-nums))
(head-2-rpo-num
(gethash head-2 rpo-nums)
(gethash head-2 rpo-nums)))
((= head-1-rpo-num head-2-rpo-num) head-1)
(cond ((> head-1-rpo-num head-2-rpo-num)
(setf head-1 (gethash head-1 idoms-table)))
((> head-2-rpo-num head-1-rpo-num)
(setf head-2 (gethash head-2 idoms-table))))))
(intersection-by-rpo-nums* (idoms-table rpo-nums &rest nodes)
(let ((inited-nodes (remove-if-not (lambda (node) (gethash node idoms-table)) nodes)))
;; Special case: INITED-NODES has only one element,
;; this means the node has only one processed
;; predecessor. In this case, `reduce' returns the
;; processed predecessor, and it is correct.
(when inited-nodes
(reduce (lambda (acc node) (intersection-by-rpo-nums idoms-table rpo-nums acc node))
inited-nodes)))))
(setf changed nil)
(multiple-value-bind (nodes rpo-nums) (nodes-in-reverse-postorder-with-rpo-nums (entry flow-graph))
(dolist (node nodes)
(let ((new-idom (apply #'intersection-by-rpo-nums* idoms-table rpo-nums (predecessors node))))
(unless (or (null new-idom) (eql (gethash node idoms-table) new-idom))
(setf (gethash node idoms-table) new-idom)
(setf changed t))))))))
(defun dominator-tarjan-simple (flow-graph)
"Compute the dominators of each node within the FLOW-GRAPH
using the Tarjan algorithm (simple version).
The result is returned as a hash-table, with nodes of FLOW-GRAPH
as key and corresponding immediate dominator as values.
Note that the entry node will always exist as a key,
and its value will be nil."
(flet ((node-with-min-semi-dom-on-path (node semi-nums-table vtree-parent-table node-with-min-semi-dom-table)
(cond ((null (gethash node vtree-parent-table))
node)
(t
(dominator-tarjan-compress-path
node semi-nums-table vtree-parent-table node-with-min-semi-dom-table)
(gethash node node-with-min-semi-dom-table))))
(vtree-link-nodes (node-1 node-2 semi-nums-table vtree-parent-table node-with-min-semi-dom-table)
(declare (ignore semi-nums-table node-with-min-semi-dom-table))
(setf (gethash node-2 vtree-parent-table) node-1)))
(dominator-tarjan-core flow-graph #'vtree-link-nodes #'node-with-min-semi-dom-on-path)))
(defun dominator-tarjan-sophisticated (flow-graph)
"Compute the dominators of each node within the FLOW-GRAPH
using the Tarjan algorithm (sophisticated version).
The result is returned as a hash-table, with nodes of FLOW-GRAPH
as key and corresponding immediate dominator as values.
Note that the entry node will always exist as a key,
and its value will be nil."
(let ((size-table (make-hash-table))
(next-subtree-root-table (make-hash-table)))
(flet ((node-with-min-semi-dom-on-path
(node semi-nums-table vtree-parent-table node-with-min-semi-dom-table)
(cond ((null (gethash node vtree-parent-table))
(gethash node node-with-min-semi-dom-table))
(t
(dominator-tarjan-compress-path
node semi-nums-table vtree-parent-table node-with-min-semi-dom-table)
(let ((vtree-parent (gethash node vtree-parent-table)))
(if (<= (gethash (gethash node node-with-min-semi-dom-table) semi-nums-table)
(gethash (gethash vtree-parent node-with-min-semi-dom-table) semi-nums-table))
(gethash node node-with-min-semi-dom-table)
(gethash vtree-parent node-with-min-semi-dom-table))))))
(vtree-link-nodes (node-1 node-2 semi-nums-table vtree-parent-table node-with-min-semi-dom-table)
(let ((current-subtree-root node-2))
(loop while (< (gethash (gethash node-2 node-with-min-semi-dom-table) semi-nums-table)
(gethash (gethash (gethash current-subtree-root next-subtree-root-table)
node-with-min-semi-dom-table)
semi-nums-table 0))
for next-subtree-root = (gethash current-subtree-root
next-subtree-root-table)
for next-subtree-root-size = (gethash next-subtree-root
size-table 0)
do (cond ((>= (- (gethash current-subtree-root size-table)
next-subtree-root-size)
(- next-subtree-root-size
(gethash (gethash next-subtree-root
next-subtree-root-table)
size-table 0)))
(setf (gethash next-subtree-root vtree-parent-table)
current-subtree-root)
(setf (gethash current-subtree-root
next-subtree-root-table)
(gethash next-subtree-root
next-subtree-root-table)))
(t
(setf (gethash next-subtree-root
size-table)
(gethash current-subtree-root size-table))
(setf (gethash current-subtree-root vtree-parent-table) next-subtree-root
current-subtree-root next-subtree-root))))
(setf (gethash current-subtree-root node-with-min-semi-dom-table)
(gethash node-2 node-with-min-semi-dom-table))
(setf (gethash node-1 size-table)
(+ (gethash node-1 size-table)
(gethash node-2 size-table)))
(when (< (gethash node-1 size-table)
(* 2 (gethash node-2 size-table)))
(rotatef current-subtree-root
(gethash node-1 next-subtree-root-table)))
(loop while current-subtree-root
do (setf (gethash current-subtree-root vtree-parent-table)
node-1)
(setf current-subtree-root (gethash current-subtree-root
next-subtree-root-table))))))
(dolist (node (nodes flow-graph))
(setf (gethash node size-table) 1))
(dominator-tarjan-core flow-graph #'vtree-link-nodes #'node-with-min-semi-dom-on-path))))
(defun dominator-tarjan-core (flow-graph vtree-link-nodes-fn node-with-min-semi-dom-on-path-fn)
(let ((entry (entry flow-graph))
(node-with-min-semi-dom-table (make-hash-table))
(vtree-parent-table (make-hash-table))
(semi-dom-buckets (make-hash-table))
(nodes-vector (make-sequence 'vector (num-of-nodes flow-graph)))
;; NOTE: Before the semi-dominator of a node n is computed,
;; semi-nums-table[n] is n's preorder number, after n's semi-dominator have computed,
;; semi-nums-table[n] is the preorder number of n's semi-dominator.
(semi-nums-table (make-hash-table))
(tree-parent-table (make-hash-table))
(idoms-table (make-hash-table)))
(let ((next-index 0))
(depth-first-search
entry
:preorder-fn (lambda (node tree-parent)
(setf (elt nodes-vector next-index) node)
(setf (gethash node semi-nums-table) next-index)
(setf (gethash node node-with-min-semi-dom-table) node)
(setf (gethash node tree-parent-table) tree-parent)
(incf next-index))))
;; Skip the node with preorder number 0 (entry)
(loop for i from (1- (length nodes-vector)) above 0
for node = (elt nodes-vector i)
do
(dolist (pred (predecessors node))
(let ((pred-node-with-min-semi-dom-on-path
(funcall node-with-min-semi-dom-on-path-fn
pred semi-nums-table vtree-parent-table node-with-min-semi-dom-table)))
(when (< (gethash pred-node-with-min-semi-dom-on-path semi-nums-table)
(gethash node semi-nums-table))
(setf (gethash node semi-nums-table)
(gethash pred-node-with-min-semi-dom-on-path semi-nums-table)))))
;; At this point, we have computed the semi-dominator of node
;; and now semi-nums-table[node] is the preorder number of node's semi-dominator.
(push node (gethash (elt nodes-vector (gethash node semi-nums-table)) semi-dom-buckets))
(let ((parent (gethash node tree-parent-table)))
(funcall vtree-link-nodes-fn parent node
semi-nums-table vtree-parent-table node-with-min-semi-dom-table)
(dolist (node (gethash parent semi-dom-buckets))
(let ((node-with-min-semi-dom-on-path
(funcall node-with-min-semi-dom-on-path-fn
node semi-nums-table vtree-parent-table node-with-min-semi-dom-table)))
(setf (gethash node idoms-table)
(cond ((< (gethash node-with-min-semi-dom-on-path semi-nums-table)
(gethash node semi-nums-table))
;; In this case, the immediate dominator of node
;; is the same as the immediate dominator of node-with-min-semi-dom-on-path,
;; so we link node to node-with-min-semi-dom-on-path in idoms-table
;; and resolve the link in the end.
node-with-min-semi-dom-on-path)
(t
;; In this case, the immediate dominator of node is just its
;; semi-dominator which is parent (the parent variable, not node's parent).
parent))))))
;; Clear the bucket so it won't affect the calcuation of
;; other subtree branchs with the same root node as
;; (gethash node tree-parent-table).
(setf (gethash (gethash node tree-parent-table) semi-dom-buckets) nil))
;; Now, we resolve the links in idoms-table, should do it in preoreder,
;; otherwise, we can't resolve these links by just one step.
(loop for i from 1 below (length nodes-vector)
for node = (elt nodes-vector i)
do (unless (eql (gethash node idoms-table)
(elt nodes-vector (gethash node semi-nums-table)))
(setf (gethash node idoms-table) (gethash (gethash node idoms-table) idoms-table))))
(setf (gethash entry idoms-table) nil)
idoms-table))
(defun dominator-tarjan-compress-path (node semi-nums-table vtree-parent-table node-with-min-semi-dom-table)
;; This function assumes that vtree-parent is non-nil.
(let ((vtree-parent (gethash node vtree-parent-table)))
(when (gethash vtree-parent vtree-parent-table)
(dominator-tarjan-compress-path
vtree-parent semi-nums-table vtree-parent-table node-with-min-semi-dom-table)
(when (< (gethash (gethash vtree-parent node-with-min-semi-dom-table) semi-nums-table)
(gethash (gethash node node-with-min-semi-dom-table) semi-nums-table))
(setf (gethash node node-with-min-semi-dom-table)
(gethash vtree-parent node-with-min-semi-dom-table)))
(setf (gethash node vtree-parent-table)
(gethash vtree-parent vtree-parent-table)))))
(defun doms-table->idoms-table (doms-table)
"Convert dominators to immediate dominators.
DOMS-TABLE is a hash table with nodes as keys and
corresponding dominators hash-set as values.
Returns immediate dominators as a hash table with nodes as keys
and corresponding immediate dominator as values.
Note that the entry node will always exist as a key,
and its value will be nil."
(let ((result (make-hash-table)))
(maphash
(lambda (node doms)
(let ((value-set nil))
(do-hash-set (dom doms)
(when (and (not (eql dom node))
(hash-set-notany
doms
(lambda (dom-2)
(hash-set-exists (gethash dom-2 doms-table) dom))
(lambda (dom-2)
(or (eql dom-2 dom)
(eql dom-2 node)))))
(setf (gethash node result) dom)
(setf value-set t)))
(unless value-set (setf (gethash node result) nil))))
doms-table)
result))
(defun idoms-table-equal (idoms-table-1 idoms-table-2)
(and (eql (hash-table-size idoms-table-1)
(hash-table-size idoms-table-2))
(let ((result t))
(block nil
(maphash (lambda (node idom)
(unless (eql (gethash node idoms-table-2) idom)
(setf result nil)
(return)))
idoms-table-1))
result)))
(defun idoms-table-equal* (&rest idoms-tables)
(every (lambda (idoms-table-1 idoms-table-2)
(idoms-table-equal idoms-table-1 idoms-table-2))
idoms-tables (cdr idoms-tables)))
(defun idoms-table->graph (idoms-table)
(let ((tree (make-graph))
(to-tree-node (make-hash-table)))
(maphash (lambda (node idom)
(declare (ignore idom))
(setf (gethash node to-tree-node)
(make-graph-node tree :name (name node))))
idoms-table)
(maphash (lambda (node idom)
(let ((node-tree-node (gethash node to-tree-node))
(idom-tree-node (gethash idom to-tree-node)))
(when idom-tree-node
(link-nodes idom-tree-node node-tree-node))))
idoms-table)
(values tree to-tree-node)))
(defun idoms-table->graphviz (idoms-table)
(graph->graphviz (idoms-table->graph idoms-table)))
(defvar *expected-idoms*
(let ((table (make-hash-table)))
(dolist (pair (list (list *node-0* nil)
(list *node-1* *node-0*)
(list *node-2* *node-1*)
(list *node-3* *node-1*)
(list *node-4* *node-3*)
(list *node-5* *node-1*)
(list *node-6* *node-5*)
(list *node-7* *node-5*)
(list *node-8* *node-5*)))
(setf (gethash (first pair) table) (second pair)))
table))
(defvar *purdom-doms* (dominator-purdom *flow-graph*))
(defvar *purdom-idoms* (doms-table->idoms-table *purdom-doms*))
(assert (idoms-table-equal *purdom-idoms* *expected-idoms*))
;; (idoms-table->graphviz *purdom-idoms*)
(defvar *iterative-doms* (dominator-iterative *flow-graph*))
(defvar *iterative-idoms* (doms-table->idoms-table *iterative-doms*))
(assert (idoms-table-equal *iterative-idoms* *expected-idoms*))
;; (idoms-table->graphviz *iterative-idoms*)
(defvar *cooper-idoms* (dominator-cooper *flow-graph*))
(assert (idoms-table-equal *cooper-idoms* *expected-idoms*))
;; (idoms-table->graphviz *cooper-idoms*)
(defvar *tarjan-simple-idoms* (dominator-tarjan-simple *flow-graph*))
(assert (idoms-table-equal *tarjan-simple-idoms* *expected-idoms*))
;; (idoms-table->graphviz *tarjan-simple-idoms*)
(defvar *tarjan-sophisticated-idoms* (dominator-tarjan-sophisticated *flow-graph*))
(assert (idoms-table-equal *tarjan-sophisticated-idoms* *expected-idoms*))
;; (idoms-table->graphviz *tarjan-sophisticated-idoms*)
(defun make-random-flow-graph (expected-num-of-nodes expected-num-of-edges)
(when (<= expected-num-of-nodes 0)
(error "expected-num-of-nodes should >= 1."))
(let* ((entry (make-node :name 'entry))
(flow-graph (make-flow-graph entry))
(nodes (make-sequence 'vector expected-num-of-nodes)))
(setf (elt nodes 0) entry)
(dotimes (i (1- expected-num-of-nodes))
(setf (elt nodes (+ i 1))
(make-graph-node flow-graph :name (gensym (format nil "NODE-~A" (+ i 1))))))
(dotimes (i expected-num-of-edges)
(let ((node-1 (elt nodes (random expected-num-of-nodes)))
(node-2 (elt nodes (random expected-num-of-nodes))))
(unless (or (eql node-2 entry)
(member node-2 (successors node-1)))
(link-nodes node-1 node-2))))
(let ((reachable (reachable entry)))
(map nil (lambda (node) (unless (hash-set-exists reachable node) (remove-node flow-graph node))) nodes))
(verify-flow-graph flow-graph nil)
flow-graph))
(defvar *random-flow-graph* (let ((count 1000)) (make-random-flow-graph count (* 3 count))))
(assert (idoms-table-equal* (doms-table->idoms-table (dominator-purdom *random-flow-graph*))
(doms-table->idoms-table (dominator-iterative *random-flow-graph*))
(dominator-cooper *random-flow-graph*)
(dominator-tarjan-simple *random-flow-graph*)
(dominator-tarjan-sophisticated *random-flow-graph*)))