-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathxp_bare.py
154 lines (134 loc) · 5.04 KB
/
xp_bare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from typing import Optional
import os
import numpy as np
from sacred import Experiment
from sacred.commands import print_config
from sacred.run import Run
from sacred.observers import FileStorageObserver, TelegramObserver
from sacred.utils import apply_backspaces_and_linefeeds
from conivel.datas.dekker import DekkerDataset
from conivel.datas.ontonotes import OntonotesDataset
from conivel.predict import predict
from conivel.score import score_ner
from conivel.train import train_ner_model
from conivel.utils import RunLogScope, pretrained_bert_for_token_classification
script_dir = os.path.abspath(os.path.dirname(__file__))
ex = Experiment()
ex.captured_out_filter = apply_backspaces_and_linefeeds # type: ignore
ex.observers.append(FileStorageObserver("runs"))
if os.path.isfile(f"{script_dir}/telegram_observer_config.json"):
ex.observers.append(
TelegramObserver.from_config(f"{script_dir}/telegram_observer_config.json")
)
@ex.config
def config():
# -- datas parameters
# number of folds
k: int = 5
# seed to use when folds shuffling. If ``None``, no shuffling is
# performed.
shuffle_kfolds_seed: Optional[int] = None
# wether to restrict the experiment to a group of book in the
# Dekker et al's dataset
book_group: Optional[str] = None
# -- common parameters
batch_size: int
# wether models should be saved or not
save_models: bool = True
# number of experiment repeats
runs_nb: int = 5
# -- NER training parameters
# number of epochs for NER training
ner_epochs_nb: int = 2
# learning rate for NER training
ner_lr: float = 2e-5
# --
# one of : 'dekker', 'ontonotes'
dataset_name: str = "dekker"
# if dataset_name == 'ontonotes'
dataset_path: Optional[str] = None
@ex.automain
def main(
_run: Run,
k: int,
shuffle_kfolds_seed: Optional[int],
book_group: Optional[str],
batch_size: int,
save_models: bool,
runs_nb: int,
ner_epochs_nb: int,
ner_lr: float,
dataset_name: str,
dataset_path: Optional[str],
):
print_config(_run)
if dataset_name == "dekker":
dataset = DekkerDataset(book_group=book_group)
elif dataset_name == "ontonotes":
assert not dataset_path is None
dataset = OntonotesDataset(dataset_path)
# keep only documents with a number of tokens >= 512
dataset.documents = [
doc for doc in dataset.documents if sum([len(sent) for sent in doc]) >= 512
]
else:
raise ValueError(f"unknown dataset name {dataset_name}")
kfolds = dataset.kfolds(
k, shuffle=not shuffle_kfolds_seed is None, shuffle_seed=shuffle_kfolds_seed
)
precision_matrix = np.zeros((runs_nb, k))
recall_matrix = np.zeros((runs_nb, k))
f1_matrix = np.zeros((runs_nb, k))
metrics_matrices = [
("precision", precision_matrix),
("recall", recall_matrix),
("f1", f1_matrix),
]
for run_i in range(runs_nb):
for fold_i, (train_set, test_set) in enumerate(kfolds):
with RunLogScope(_run, f"run{run_i}.fold{fold_i}"):
model = pretrained_bert_for_token_classification(
"bert-base-cased", train_set.tag_to_id
)
model = train_ner_model(
model,
train_set,
train_set,
_run=_run,
epochs_nb=ner_epochs_nb,
batch_size=batch_size,
learning_rate=ner_lr,
quiet=True,
)
if save_models:
sacred_archive_huggingface_model(_run, model, "model") # type: ignore
preds = predict(model, test_set, batch_size=batch_size).tags
precision, recall, f1 = score_ner(test_set.sents(), preds)
_run.log_scalar(f"test_precision", precision)
precision_matrix[run_i][fold_i] = precision
_run.log_scalar("test_recall", recall)
recall_matrix[run_i][fold_i] = recall
_run.log_scalar("test_f1", f1)
f1_matrix[run_i][fold_i] = f1
# mean metrics for the current run
for metrics_name, matrix in metrics_matrices:
for op_name, op in [("mean", np.mean), ("stdev", np.std)]:
_run.log_scalar(
f"run{run_i}.{op_name}_test_{metrics_name}",
op(matrix[run_i], axis=0),
)
# folds mean metrics
for fold_i in range(k):
for metrics_name, matrix in metrics_matrices:
for op_name, op in [("mean", np.mean), ("stdev", np.std)]:
_run.log_scalar(
f"fold{fold_i}.{op_name}_test_{metrics_name}",
op(matrix[:, fold_i], axis=0),
)
# global mean metrics
for name, matrix in metrics_matrices:
for op_name, op in [("mean", np.mean), ("stdev", np.std)]:
_run.log_scalar(
f"{op_name}_test_{name}",
op(matrix, axis=(0, 1)),
)