-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathxp_ideal_neural_retriever.py
227 lines (200 loc) · 8.18 KB
/
xp_ideal_neural_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os, copy
from typing import List, Optional
from sacred import Experiment
from sacred.commands import print_config
from sacred.run import Run
from sacred.observers import FileStorageObserver, TelegramObserver
from sacred.utils import apply_backspaces_and_linefeeds
import numpy as np
from conivel.datas.dekker import DekkerDataset
from conivel.datas.context import (
IdealNeuralContextRetriever,
context_retriever_name_to_class,
)
from conivel.predict import predict
from conivel.score import score_ner
from conivel.train import train_ner_model
from conivel.utils import (
RunLogScope,
sacred_archive_huggingface_model,
sacred_archive_jsonifiable_as_file,
sacred_log_series,
gpu_memory_usage,
pretrained_bert_for_token_classification,
)
script_dir = os.path.abspath(os.path.dirname(__file__))
ex = Experiment()
ex.captured_out_filter = apply_backspaces_and_linefeeds # type: ignore
ex.observers.append(FileStorageObserver("runs"))
if os.path.isfile(f"{script_dir}/telegram_observer_config.json"):
ex.observers.append(
TelegramObserver.from_config(f"{script_dir}/telegram_observer_config.json")
)
@ex.config
def config():
# -- datas parameters
# number of folds
k: int = 5
# seed to use when folds shuffling. If ``None``, no shuffling is
# performed.
shuffle_kfolds_seed: Optional[int] = None
# wether to restrict the experiment to a group of book in the
# Dekker et al's dataset
book_group: Optional[str] = None
# list of folds number (starting from 0) to perform the experiment
# on. If not specified, perform the experiment on all folds
folds_list: Optional[list] = None
# -- common parameters
batch_size: int
# wether models should be saved or not
save_models: bool = True
# number of experiment repeats
runs_nb: int = 5
# -- retrieval heuristic
# pre-retrieval heuristic name
retrieval_heuristic: str = "random"
# parameters for the retrieval heuristic used at inference time
retrieval_heuristic_inference_kwargs: dict
# -- ideal retriever
invert_ideal_retriever: bool = False
# -- NER training parameters
# list of number of sents to test
sents_nb_list: list
# number of epochs for NER training
ner_epochs_nb: int = 2
# learning rate for NER training
ner_lr: float = 2e-5
# wether to use the retrieval heuristic when performing training
# or not
ner_use_retrieval_heuristic_for_training: bool = True
@ex.automain
def main(
_run: Run,
k: int,
shuffle_kfolds_seed: Optional[int],
book_group: Optional[str],
folds_list: Optional[List[int]],
batch_size: int,
save_models: bool,
runs_nb: int,
retrieval_heuristic: str,
retrieval_heuristic_inference_kwargs: dict,
invert_ideal_retriever: bool,
sents_nb_list: List[int],
ner_epochs_nb: int,
ner_lr: float,
ner_use_retrieval_heuristic_for_training: bool,
):
print_config(_run)
dekker_dataset = DekkerDataset(book_group=book_group)
kfolds = dekker_dataset.kfolds(
k, shuffle=not shuffle_kfolds_seed is None, shuffle_seed=shuffle_kfolds_seed
)
folds_nb = max(len(folds_list) if not folds_list is None else 0, len(kfolds))
# metrics matrices
# each matrix is of shape (runs_nb, folds_nb, sents_nb)
# these are used to record mean metrics across folds, runs...
precision_matrix = np.zeros((runs_nb, folds_nb, len(sents_nb_list)))
recall_matrix = np.zeros((runs_nb, folds_nb, len(sents_nb_list)))
f1_matrix = np.zeros((runs_nb, folds_nb, len(sents_nb_list)))
metrics_matrices = [
("precision", precision_matrix),
("recall", recall_matrix),
("f1", f1_matrix),
]
for run_i in range(runs_nb):
for fold_i, (train_set, test_set) in enumerate(kfolds):
if not folds_list is None and not fold_i in folds_list:
continue
if ner_use_retrieval_heuristic_for_training:
# PERFORMANCE HACK: only use the retrieval heuristic at
# training time. At training time, the number of sentences
# retrieved is random between ``min(sents_nb_list)`` and
# ``max(sents_nb_list)`` for each example.
train_set_heuristic_kwargs = copy.deepcopy(
retrieval_heuristic_inference_kwargs
)
train_set_heuristic_kwargs["sents_nb"] = sents_nb_list
train_set_heuristic = context_retriever_name_to_class[
retrieval_heuristic
](**train_set_heuristic_kwargs)
ctx_train_set = train_set_heuristic(train_set)
else:
ctx_train_set = train_set
# train ner model on train_set
ner_model = pretrained_bert_for_token_classification(
"bert-base-cased", train_set.tag_to_id
)
with RunLogScope(_run, f"run{run_i}.fold{fold_i}.ner"):
ner_model = train_ner_model(
ner_model,
ctx_train_set,
ctx_train_set,
_run=_run,
epochs_nb=ner_epochs_nb,
batch_size=batch_size,
learning_rate=ner_lr,
)
if save_models:
sacred_archive_huggingface_model(_run, ner_model, "ner_model") # type: ignore
neural_context_retriever = IdealNeuralContextRetriever(
1,
context_retriever_name_to_class[retrieval_heuristic](
**retrieval_heuristic_inference_kwargs
),
ner_model,
batch_size,
dekker_dataset.tags,
inverted=invert_ideal_retriever,
)
for sents_nb_i, sents_nb in enumerate(sents_nb_list):
_run.log_scalar("gpu_usage", gpu_memory_usage())
neural_context_retriever.sents_nb = sents_nb
ctx_test_set = neural_context_retriever(test_set)
# save sentences retrieved by the oracle
sacred_archive_jsonifiable_as_file(
_run,
[sent.to_jsonifiable() for sent in ctx_test_set.sents()],
f"run{run_i}.fold{fold_i}.{sents_nb}_sents.oracle_retrieval",
)
# scoring
test_preds = predict(ner_model, ctx_test_set).tags
precision, recall, f1 = score_ner(test_set.sents(), test_preds)
_run.log_scalar(
f"run{run_i}.fold{fold_i}.test_precision", precision, step=sents_nb
)
precision_matrix[run_i][fold_i][sents_nb_i] = precision
_run.log_scalar(
f"run{run_i}.fold{fold_i}.test_recall", recall, step=sents_nb
)
recall_matrix[run_i][fold_i][sents_nb_i] = recall
_run.log_scalar(f"run{run_i}.fold{fold_i}.test_f1", f1, step=sents_nb)
f1_matrix[run_i][fold_i][sents_nb_i] = f1
# mean metrics for the current run
for metrics_name, matrix in metrics_matrices:
for op_name, op in [("mean", np.mean), ("stdev", np.std)]:
sacred_log_series(
_run,
f"run{run_i}.{op_name}_test_{metrics_name}",
op(matrix[run_i], axis=0), # (sents_nb_list)
steps=sents_nb_list,
)
# folds mean metrics
for fold_i in range(folds_nb):
for metrics_name, matrix in metrics_matrices:
for op_name, op in [("mean", np.mean), ("stdev", np.std)]:
sacred_log_series(
_run,
f"fold{fold_i}.{op_name}_test_{metrics_name}",
op(matrix[:, fold_i, :], axis=0), # (sents_nb_list)
steps=sents_nb_list,
)
# global mean metrics
for name, matrix in metrics_matrices:
for op_name, op in [("mean", np.mean), ("stdev", np.std)]:
sacred_log_series(
_run,
f"{op_name}_test_{name}",
op(matrix, axis=(0, 1)), # (sents_nb)
steps=sents_nb_list,
)