-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoriginal_vs_fixed_ner.py
44 lines (35 loc) · 1.4 KB
/
original_vs_fixed_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import glob, os
from rich import print
from tqdm import tqdm
from ddaugner.datas import BookDataset
from ddaugner.score import score_ner
script_dir = f"{os.path.dirname(os.path.abspath(__file__))}"
if __name__ == "__main__":
old_paths = [
{"original": path, "fixed": f"{path}.fixed"}
for path in glob.glob(f"{script_dir}/ner/old/*.conll")
]
new_paths = [
{"original": path, "fixed": f"{path}.fixed"}
for path in glob.glob(f"{script_dir}/ner/new/*.conll")
]
results = {}
for paths in tqdm(new_paths + old_paths):
original = BookDataset(paths["original"])
fixed = BookDataset(paths["fixed"])
precision, recall, f1 = score_ner(original.sents, [s.tags for s in fixed.sents])
book_name = os.path.splitext(os.path.basename(paths["original"]))[0]
results[book_name] = {"precision": precision, "recall": recall, "f1": f1}
mean_precision = sum(
[v["precision"] if not v["precision"] is None else 0 for v in results.values()]
) / len(results)
mean_recall = sum(
[v["recall"] if not v["recall"] is None else 0 for v in results.values()]
) / len(results)
mean_f1 = sum(
[v["f1"] if not v["f1"] is None else 0 for v in results.values()]
) / len(results)
results["mean_precision"] = mean_precision
results["mean_recall"] = mean_recall
results["mean_f1"] = mean_f1
print(results)