-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmixed-precision.py
761 lines (621 loc) · 21.6 KB
/
mixed-precision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
"""
Script to compute the electronic correlation energy using
coupled-cluster theory through single and double excitations,
from a RHF reference wavefunction.
References:
- Algorithms from Daniel Crawford's programming website:
http://github.com/CrawfordGroup/ProgrammingProjects
- DPD Formulation of CC Equations: [Stanton:1991:4334]
"""
__authors__ = "Daniel G. A. Smith"
__credits__ = ["Daniel G. A. Smith", "Lori A. Burns"]
__copyright__ = "(c) 2014-2018, The Psi4NumPy Developers"
__license__ = "BSD-3-Clause"
__date__ = "2014-07-29"
import time
import numpy as np
np.set_printoptions(precision=8, linewidth=200, suppress=True)
import psi4
from opt_einsum import contract
from numpy.linalg import norm
# Set memory
psi4.set_memory('5 GB')
psi4.core.set_output_file('output.dat', False)
numpy_memory = 60
### Water molecule
#mol = psi4.geometry(
"""
O
H 1 1.1
H 1 1.1 2 104
symmetry c1
"""
#)
# The coordinates are from the SI of [DOI: 10.1021/acs.jctc.8b00321]
### Water cluster
## Number of water molecule
# 2
#mol = psi4.geometry(
"""
O -1.5167088799 -0.0875022822 0.0744338901
H -0.5688047242 0.0676402012 -0.0936613229
H -1.9654552961 0.5753254158 -0.4692384530
O 1.3898685804 0.0960995460 -0.0761488482
H 1.5926924704 -0.8335878302 -0.2679884752
H 1.5164596797 0.1745974125 0.8831816344
symmetry c1
"""
#)
# 3
#mol = psi4.geometry(
"""
O -1.4765014766 -0.6332885087 0.0898827346
H -1.9838499390 -0.7470663319 -0.7281466521
H -1.1474120728 0.2937933586 0.0499611499
O 1.3009060824 -0.9725326095 0.1123300788
H 1.6231813194 -1.4263451978 -0.6812347553
H 0.3383752926 -1.1745452783 0.1460364674
O 0.2066022512 1.5796259613 -0.1194070925
H 0.8505520801 0.8353634930 -0.0913819530
H 0.3749571446 2.0763034073 0.6962042911
symmetry c1
"""
#)
# 4
mol = psi4.geometry(
"""
O -1.9292712102 -0.0645569159 0.1117679206
H -2.4914119096 0.0073852098 -0.6743533999
H -1.3279797920 0.7200450587 0.0572351830
O 0.0556775311 -1.9834041949 0.1251954700
H -0.7452932853 -1.4024421984 0.1534116762
H -0.0578054438 -2.5263517257 -0.6694026790
O -0.0284527051 1.9145766189 -0.1269877741
H 0.0826356714 2.4643236809 0.6632720821
H 2.4967666426 -0.0808647657 0.7228603336
O 1.9591510378 -0.0026698519 -0.0796304864
H 0.7727195176 1.3336367194 -0.1473249006
H 1.3542775597 -0.7856500486 -0.0462427112
symmetry c1
"""
)
# 5
#mol = psi4.geometry(
"""
O -0.2876645445 -1.7012437583 0.2029164243
H -0.5715171913 -2.6278936014 0.2177698265
H -1.1211952210 -1.1567502352 0.1410434902
O 1.4494811981 -0.1832356135 -1.3664308071
H 0.8495877249 -0.8784465376 -1.0148018507
H 1.7885868060 -0.5222367118 -2.2083896644
O -2.3074119608 0.0600951514 -0.0549593403
H -2.8203525262 0.2892204097 0.7353401875
H 0.2626613561 1.4965603247 0.5922725167
O -0.2424726136 1.8126064878 -0.1909073151
H -1.6640497911 0.8139612893 -0.1634430169
H 0.2878907915 1.4335334111 -0.9188689235
O 1.3813546468 0.2415962603 1.5136093974
H 0.8356415445 -0.5611886184 1.3988328403
H 1.9779314005 0.1892600736 0.7452520171
symmetry c1
"""
#)
# 6
#mol = psi4.geometry(
"""
O -1.0056893157 -0.1043674637 1.7352314342
H -1.0664276447 -0.3762387797 2.6634016204
H -1.5071027077 -0.7913788396 1.2185432381
O 1.1470564813 0.3117796882 -0.0477367962
H 0.6103606068 0.0433421321 0.7275681882
H 2.0791424333 0.1211528401 0.1794662548
O -2.2063795158 -1.8574899369 0.0516378330
H -3.1585603577 -1.7418528352 -0.0901912407
H -1.2703988826 0.5556485786 -1.4822595530
O -0.9686544539 -0.3213451857 -1.8092615790
H -1.7829183163 -1.4200976013 -0.7381133801
H -0.0506196244 -0.3301023162 -1.4666019324
O -1.1414038621 2.0193691143 -0.2156011398
H -1.3619510638 1.5449391020 0.6091355621
H -0.1726333256 1.9018225581 -0.2491925658
O 3.9130618957 -0.1477904028 0.5773094099
H 4.3921274685 0.6778964502 0.4038875571
H 4.3084563274 -0.7931325208 -0.0300166098
symmetry c1
"""
#)
# 7
#mol = psi4.geometry(
"""
O -0.2578815727 0.8589987101 1.0903178485
H 0.5724321179 0.9957545630 1.6134194631
H -0.3379575048 -0.1213199214 1.0257127358
O 0.7053437993 1.0245432710 -1.4943936709
H 0.3698578944 1.1189598601 -0.5656693305
H 1.0352513822 1.9002918475 -1.7483588311
O -0.3458650799 -1.7904919129 0.2521395252
H -0.8067013063 -2.5793300144 0.5772833215
H -2.2204485019 0.0514045678 -1.2281883065
O -1.6470360380 -0.5567512801 -1.7481190861
H -0.8635215557 -1.4793338112 -0.5471909111
H -0.9032735713 0.0137100383 -2.0286082118
O -2.8270840011 1.2361544476 0.0947724694
H -2.0207774964 1.2912094835 0.6512402118
H -3.0198162448 2.1508831339 -0.1596488039
O 2.3155522081 0.8259479989 1.9468048976
H 2.6243054144 0.3877453957 2.7538641108
H 2.4860312413 0.1745463055 1.2179450536
O 2.3555214451 -0.9273649757 -0.1787945084
H 1.5622606691 -1.4797809021 -0.0212223033
H 2.0415014395 -0.3067984167 -0.8674027785
symmetry c1
"""
#)
psi4.set_options({'basis': '3-21g',
'scf_type': 'pk',
'mp2_type': 'conv',
'freeze_core': 'false',
'e_convergence': 1e-10,
'd_convergence': 1e-10})
# CCSD Settings
E_conv = 1.e-7
maxiter = 20
print_amps = False
compare_psi4 = True
# First compute RHF energy using Psi4
scf_e, wfn = psi4.energy('SCF', return_wfn=True)
# Grab data from
C = wfn.Ca()
ndocc = wfn.doccpi()[0]
nmo = wfn.nmo()
SCF_E = wfn.energy()
eps = np.asarray(wfn.epsilon_a())
# Compute size of SO-ERI tensor in GB
ERI_Size = (nmo ** 4) * 128e-9
print('\nSize of the SO ERI tensor will be %4.2f GB.' % ERI_Size)
memory_footprint = ERI_Size * 5.2
if memory_footprint > numpy_memory:
psi4.clean()
raise Exception("Estimated memory utilization (%4.2f GB) exceeds numpy_memory \
limit of %4.2f GB." % (memory_footprint, numpy_memory))
# Integral generation from Psi4's MintsHelper
t = time.time()
mints = psi4.core.MintsHelper(wfn.basisset())
H = np.asarray(mints.ao_kinetic()) + np.asarray(mints.ao_potential())
print('\nTotal time taken for ERI integrals: %.3f seconds.\n' % (time.time() - t))
# Make spin-orbital MO antisymmetrized integrals
print('Starting AO -> spin-orbital MO transformation...')
t = time.time()
MO = np.asarray(mints.mo_spin_eri(C, C))
MO64 = np.asarray(mints.mo_spin_eri(C, C))
# Update nocc and nvirt
nso = nmo * 2
nocc = ndocc * 2
nvirt = nso - nocc
print("nso, ", nso)
print("nocc, ", nocc)
# Make slices
o = slice(0, nocc)
v = slice(nocc, MO.shape[0])
#Extend eigenvalues
eps = np.repeat(eps, 2)
Eocc = eps[o]
Evirt = eps[v]
print('..finished transformation in %.3f seconds.\n' % (time.time() - t))
# DPD approach to CCSD equations from [Stanton:1991:4334]
# occ orbitals i, j, k, l, m, n
# virt orbitals a, b, c, d, e, f
# all oribitals p, q, r, s, t, u, v
#Bulid Eqn 9: tilde{\Tau})
def build_tilde_tau(t1, t2):
"""Builds [Stanton:1991:4334] Eqn. 9"""
ttau = t2.copy()
tmp = 0.5 * contract('ia,jb->ijab', t1, t1)
ttau += tmp
ttau -= tmp.swapaxes(2, 3)
return ttau
#Build Eqn 10: \Tau)
def build_tau(t1, t2):
"""Builds [Stanton:1991:4334] Eqn. 10"""
ttau = t2.copy()
tmp = contract('ia,jb->ijab', t1, t1)
ttau += tmp
ttau -= tmp.swapaxes(2, 3)
return ttau
#Build Eqn 3:
def build_Fae(t1, t2):
"""Builds [Stanton:1991:4334] Eqn. 3"""
Fae = F[v, v].copy()
Fae[np.diag_indices_from(Fae)] = 0
Fae -= 0.5 * contract('me,ma->ae', F[o, v], t1)
Fae += contract('mf,mafe->ae', t1, MO[o, v, v, v])
tmp_tau = build_tilde_tau(t1, t2)
Fae -= 0.5 * contract('mnaf,mnef->ae', tmp_tau, MO[o, o, v, v])
return Fae
#Build Eqn 4:
def build_Fmi(t1, t2):
"""Builds [Stanton:1991:4334] Eqn. 4"""
Fmi = F[o, o].copy()
Fmi[np.diag_indices_from(Fmi)] = 0
Fmi += 0.5 * contract('ie,me->mi', t1, F[o, v])
Fmi += contract('ne,mnie->mi', t1, MO[o, o, o, v])
tmp_tau = build_tilde_tau(t1, t2)
Fmi += 0.5 * contract('inef,mnef->mi', tmp_tau, MO[o, o, v, v])
return Fmi
#Build Eqn 5:
def build_Fme(t1, t2):
"""Builds [Stanton:1991:4334] Eqn. 5"""
Fme = F[o, v].copy()
Fme += contract('nf,mnef->me', t1, MO[o, o, v, v])
return Fme
#Build Eqn 6:
def build_Wmnij(t1, t2):
"""Builds [Stanton:1991:4334] Eqn. 6"""
Wmnij = MO[o, o, o, o].copy()
Pij = contract('je,mnie->mnij', t1, MO[o, o, o, v])
Wmnij += Pij
Wmnij -= Pij.swapaxes(2, 3)
tmp_tau = build_tau(t1, t2)
Wmnij += 0.25 * contract('ijef,mnef->mnij', tmp_tau, MO[o, o, v, v])
return Wmnij
#Build Eqn 7:
def build_Wabef(t1, t2):
"""Builds [Stanton:1991:4334] Eqn. 7"""
# Rate limiting step written using tensordot, ~10x faster
# The commented out lines are consistent with the paper
Wabef = MO[v, v, v, v].copy()
Pab = contract('baef->abef', np.tensordot(t1, MO[v, o, v, v], axes=(0, 1)))
# Pab = np.einsum('mb,amef->abef', t1, MO[v, o, v, v])
Wabef -= Pab
Wabef += Pab.swapaxes(0, 1)
tmp_tau = build_tau(t1, t2)
Wabef += 0.25 * np.tensordot(tmp_tau, MO[v, v, o, o], axes=((0, 1), (2, 3)))
# Wabef += 0.25 * np.einsum('mnab,mnef->abef', tmp_tau, MO[o, o, v, v])
return Wabef
#Build Eqn 8:
def build_Wmbej(t1, t2):
"""Builds [Stanton:1991:4334] Eqn. 8"""
Wmbej = MO[o, v, v, o].copy()
Wmbej += contract('jf,mbef->mbej', t1, MO[o, v, v, v])
Wmbej -= contract('nb,mnej->mbej', t1, MO[o, o, v, o])
tmp = (0.5 * t2) + contract('jf,nb->jnfb', t1, t1)
Wmbej -= contract('jbme->mbej', np.tensordot(tmp, MO[o, o, v, v], axes=((1, 2), (1, 3))))
# Wmbej -= np.einsum('jnfb,mnef->mbej', tmp, MO[o, o, v, v])
return Wmbej
### Build so Fock matirx
# Update H, transform to MO basis and tile for alpha/beta spin
H = np.einsum('uj,vi,uv', C, C, H)
H = np.repeat(H, 2, axis=0)
H = np.repeat(H, 2, axis=1)
# Make H block diagonal
spin_ind = np.arange(H.shape[0], dtype=np.int) % 2
H *= (spin_ind.reshape(-1, 1) == spin_ind)
# Compute Fock matrix
F = H + np.einsum('pmqm->pq', MO[:, o, :, o])
F64 = H + np.einsum('pmqm->pq', MO[:, o, :, o])
### Build D matrices: [Stanton:1991:4334] Eqns. 12 & 13
Focc = F[np.arange(nocc), np.arange(nocc)].flatten()
Fvirt = F[np.arange(nocc, nvirt + nocc), np.arange(nocc, nvirt + nocc)].flatten()
Dia = Focc.reshape(-1, 1) - Fvirt
Dijab = Focc.reshape(-1, 1, 1, 1) + Focc.reshape(-1, 1, 1) - Fvirt.reshape(-1, 1) - Fvirt
### Construct initial guess
# t^a_i
t1 = np.zeros((nocc, nvirt))
# t^{ab}_{ij}
MOijab = MO[o, o, v, v]
t2 = MOijab / Dijab
### Compute MP2 in MO basis set to make sure the transformation was correct
MP2corr_E = np.einsum('ijab,ijab->', MOijab, t2) / 4
MP2_E = SCF_E + MP2corr_E
print('MO based MP2 correlation energy: %.8f' % MP2corr_E)
print('MP2 total energy: %.8f' % MP2_E)
psi4.compare_values(psi4.energy('mp2'), MP2_E, 6, 'MP2 Energy')
### Start CCSD iterations
print('\nStarting CCSD iterations')
ccsd_tstart = time.time()
CCSDcorr_E_old = 0.0
### Convert the initial values to single precision to build the intermediates
MO = np.float32(MO)
F = np.float32(F)
for CCSD_iter in range(1, maxiter + 1):
### Convert to single precision to build the intermediates
t1_sp = np.float32(t1)
t2_sp = np.float32(t2)
### Build intermediates: [Stanton:1991:4334] Eqns. 3-8 (in single precision)
Fae = build_Fae(t1_sp, t2_sp)
Fmi = build_Fmi(t1_sp, t2_sp)
Fme = build_Fme(t1_sp, t2_sp)
time2 = time.time()
Wmnij = build_Wmnij(t1_sp, t2_sp)
Wabef = build_Wabef(t1_sp, t2_sp)
Wmbej = build_Wmbej(t1_sp, t2_sp)
tmp1 = contract('ie,ae->ia', t1_sp, Fae)
tmp2 = contract('ma,mi->ia', t1_sp, Fmi)
tmp3 = contract('imae,me->ia', t2_sp, Fme)
tmp4 = contract('nf,naif->ia', t1_sp, MO[o, v, o, v])
tmp5 = contract('imef,maef->ia', t2_sp, MO[o, v, v, v])
tmp6 = contract('mnae,nmei->ia', t2_sp, MO[o, o, v, o])
### Convert back to double precision
tmp1 = np.float64(tmp1)
tmp2 = np.float64(tmp2)
tmp3 = np.float64(tmp3)
tmp4 = np.float64(tmp4)
tmp5 = np.float64(tmp5)
tmp6 = np.float64(tmp6)
#### Build RHS side of t1 equations, [Stanton:1991:4334] Eqn. 1
rhs_T1 = F64[o, v].copy()
rhs_T1 += tmp1
rhs_T1 -= tmp2
rhs_T1 += tmp3
rhs_T1 -= tmp4
rhs_T1 -= 0.5 * tmp5
rhs_T1 -= 0.5 * tmp6
### Build RHS side of t2 equations, [Stanton:1991:4334] Eqn. 2
rhs_T2 = MO64[o, o, v, v].copy()
# P_(ab) t_ijae (F_be - 0.5 t_mb F_me)
tmp21 = contract('mb,me->be', t1_sp, Fme)
tmp21 = np.float64(tmp21)
Fae = np.float64(Fae)
tmp = Fae - 0.5 * tmp21
tmp = np.float32(tmp)
Pab = contract('ijae,be->ijab', t2_sp, tmp)
Pab = np.float64(Pab)
#Pab = contract('ijae,be->ijab', t2, tmp)
rhs_T2 += Pab
rhs_T2 -= Pab.swapaxes(2, 3)
# P_(ij) t_imab (F_mj + 0.5 t_je F_me)
tmp22 = contract('je,me->mj', t1_sp, Fme)
tmp22 = np.float64(tmp22)
Fmi = np.float64(Fmi)
tmp = Fmi + 0.5 * tmp22
tmp = np.float32(tmp)
Pij = contract('imab,mj->ijab', t2_sp, tmp)
Pij = np.float64(Pij)
rhs_T2 -= Pij
rhs_T2 += Pij.swapaxes(0, 1)
tmp_tau = build_tau(t1_sp, t2_sp)
tmp23 = contract('mnab,mnij->ijab', tmp_tau, Wmnij)
tmp23 = np.float64(tmp23)
rhs_T2 += 0.5 * tmp23
tmp24 = contract('ijef,abef->ijab', tmp_tau, Wabef)
tmp24 = np.float64(tmp24)
rhs_T2 += 0.5 * tmp24
# P_(ij) * P_(ab)
# (ij - ji) * (ab - ba)
# ijab - ijba -jiab + jiba
tmp = contract('ie,ma,mbej->ijab', t1_sp, t1_sp, MO[o, v, v, o])
Pijab = contract('imae,mbej->ijab', t2_sp, Wmbej)
Pijab = np.float64(Pijab)
Pijab -= np.float64(tmp)
rhs_T2 += Pijab
rhs_T2 -= Pijab.swapaxes(2, 3)
rhs_T2 -= Pijab.swapaxes(0, 1)
rhs_T2 += Pijab.swapaxes(0, 1).swapaxes(2, 3)
Pij = np.float64(contract('ie,abej->ijab', t1_sp, MO[v, v, v, o]))
rhs_T2 += Pij
rhs_T2 -= Pij.swapaxes(0, 1)
Pab = np.float64(contract('ma,mbij->ijab', t1_sp, MO[o, v, o, o]))
rhs_T2 -= Pab
rhs_T2 += Pab.swapaxes(2, 3)
### Update t1 and t2 amplitudes
t1 = np.float64(t1_sp)
t2 = np.float64(t2_sp)
t1 = rhs_T1 / Dia
t2 = rhs_T2 / Dijab
### Compute CCSD correlation energy
CCSDcorr_E = np.einsum('ia,ia->', F64[o, v], t1)
tmpE = np.einsum('ijab,ijab->', MO64[o, o, v, v], t2)
CCSDcorr_E += 0.25 * tmpE
tmpE = np.einsum('ijab,ia,jb->', MO64[o, o, v, v], t1, t1)
CCSDcorr_E += 0.5 * tmpE
### Print CCSD correlation energy
print('CCSD Iteration %3d: CCSD correlation = %3.12f '\
'dE = %3.5E' % (CCSD_iter, CCSDcorr_E, (CCSDcorr_E - CCSDcorr_E_old)))
if (abs(CCSDcorr_E - CCSDcorr_E_old) < E_conv):
break
CCSDcorr_E_old = CCSDcorr_E
print('CCSD iterations took %.2f seconds.\n' % (time.time() - ccsd_tstart))
CCSD_E = SCF_E + CCSDcorr_E
print('\nFinal CCSD correlation energy: % 16.10f' % CCSDcorr_E)
print('Total CCSD energy: % 16.10f' % CCSD_E)
if compare_psi4:
psi4.compare_values(psi4.energy('CCSD'), CCSD_E, 6, 'CCSD Energy')
if print_amps:
# [::4] take every 4th, [-5:] take last 5, [::-1] reverse order
t2_args = np.abs(t2).ravel().argsort()[::2][-5:][::-1]
t1_args = np.abs(t1).ravel().argsort()[::4][-5:][::-1]
print('\nLargest t1 amplitudes')
for pos in t1_args:
value = t1.flat[pos]
inds = np.unravel_index(pos, t1.shape)
print('%4d %4d | % 5.10f' % (inds[0], inds[1], value))
print('\nLargest t2 amplitudes')
for pos in t2_args:
value = t2.flat[pos]
inds = np.unravel_index(pos, t2.shape)
print('%4d %4d %4d %4d | % 5.10f' % (inds[0], inds[1], inds[2], inds[3], value))
"""
# Check the magnitudes of r_T1
print("1: ", F[o, v].copy())
print("2: ", np.einsum('ie,ae->ia', t1, Fae))
print("3: ", np.einsum('ma,mi->ia', t1, Fmi))
print("4: ", np.einsum('imae,me->ia', t2, Fme))
print("5: ", np.einsum('nf,naif->ia', t1, MO[o, v, o, v]))
print("6: ", 0.5 * np.einsum('imef,maef->ia', t2, MO[o, v, v, v]))
print("7: ", 0.5 * np.einsum('mnae,nmei->ia', t2, MO[o, o, v, o]))
print("norm: ")
print("1: ", norm(F[o, v].copy()))
print("2: ", norm(np.einsum('ie,ae->ia', t1, Fae)))
print("3: ", norm(np.einsum('ma,mi->ia', t1, Fmi)))
print("4: ", norm(np.einsum('imae,me->ia', t2, Fme)))
print("5: ", norm(np.einsum('nf,naif->ia', t1, MO[o, v, o, v])))
print("6: ", norm(0.5 * np.einsum('imef,maef->ia', t2, MO[o, v, v, v])))
print("7: ", norm(0.5 * np.einsum('mnae,nmei->ia', t2, MO[o, o, v, o])))
# Components of Fae
tmp1 = F[v, v].copy()
tmp1[np.diag_indices_from(Fae)] = 0
print("Fae1: ", np.einsum('ie,ae->ia', t1, tmp1))
tmp2 = F[v, v].copy()
tmp2 = -0.5 * np.einsum('me,ma->ae', F[o, v], t1)
print("Fae2: ", np.einsum('ie,ae->ia', t1, tmp2))
tmp3 = F[v, v].copy()
tmp3 = np.einsum('mf,mafe->ae', t1, MO[o, v, v, v])
print("Fae3: ", np.einsum('ie,ae->ia', t1, tmp3))
tmp_tau = build_tilde_tau(t1, t2)
tmp4 = F[v, v].copy()
tmp4 = -0.5 * np.einsum('mnaf,mnef->ae', tmp_tau, MO[o, o, v, v])
print("Fae4: ", np.einsum('ie,ae->ia', t1, tmp4))
print("norm of Fae3: ", norm(np.einsum('ie,ae->ia', t1, tmp3)))
print("norm of Fae4: ", norm(np.einsum('ie,ae->ia', t1, tmp4)))
print("E1: ", np.einsum('ia,ia->', F[o, v], t1))
print("E2: ", 0.25 * np.einsum('ijab,ijab->', MO[o, o, v, v], t2))
print("E3: ", 0.5 * np.einsum('ijab,ia,jb->', MO[o, o, v, v], t1, t1))
# Check the magnitudes for r_T2
tmp = Fae - 0.5 * np.einsum('mb,me->be', t1, Fme)
tmp_a = Fae
tmp_b = -0.5 * np.einsum('mb,me->be', t1, Fme)
Pab = np.einsum('ijae,be->ijab', t2, tmp)
Pab_a = np.einsum('ijae,be->ijab', t2, tmp_a)
Pab_b = np.einsum('ijae,be->ijab', t2, tmp_b)
tmp2 = Pab
tmp2 -= Pab.swapaxes(2, 3)
tmp2a = Pab_a
tmp2a -= Pab_a.swapaxes(2, 3)
tmp2b = Pab_b
tmp2b -= Pab_b.swapaxes(2, 3)
tmp = Fmi + 0.5 * np.einsum('je,me->mj', t1, Fme)
tmp_a = Fmi
tmp_b = 0.5 * np.einsum('je,me->mj', t1, Fme)
Pij = np.einsum('imab,mj->ijab', t2, tmp)
Pij_a = np.einsum('imab,mj->ijab', t2, tmp_a)
Pij_b = np.einsum('imab,mj->ijab', t2, tmp_b)
tmp3 = Pij
tmp3 += Pij.swapaxes(0, 1)
tmp3a = Pij_a
tmp3a += Pij_a.swapaxes(0, 1)
tmp3b = Pij_b
tmp3b += Pij_b.swapaxes(0, 1)
tmp_tau = build_tau(t1, t2)
tmp4 = 0.5 * np.einsum('mnab,mnij->ijab', tmp_tau, Wmnij)
tmp5 = 0.5 * np.einsum('ijef,abef->ijab', tmp_tau, Wabef)
tmp_b = np.einsum('ie,ma,mbej->ijab', t1, t1, MO[o, v, v, o])
tmp_a = np.einsum('imae,mbej->ijab', t2, Wmbej)
#tmp6a = tmp
#tmp6b = Pijab
Pijab = tmp_a - tmp_b
tmp6 = Pijab
tmp6 -= Pijab.swapaxes(2, 3)
tmp6 -= Pijab.swapaxes(0, 1)
tmp6 += Pijab.swapaxes(0, 1).swapaxes(2, 3)
tmp6a = tmp_a
tmp6a -= tmp6a.swapaxes(2, 3)
tmp6a -= tmp6a.swapaxes(0, 1)
tmp6a += tmp6a.swapaxes(0, 1).swapaxes(2, 3)
tmp6b = tmp_b
tmp6b -= tmp6b.swapaxes(2, 3)
tmp6b -= tmp6b.swapaxes(0, 1)
tmp6b += tmp6b.swapaxes(0, 1).swapaxes(2, 3)
Pij = np.einsum('ie,abej->ijab', t1, MO[v, v, v, o])
tmp7 = Pij
tmp7 -= Pij.swapaxes(0, 1)
Pab = np.einsum('ma,mbij->ijab', t1, MO[o, v, o, o])
tmp8 = Pab
tmp8 += Pab.swapaxes(2, 3)
print("1: ", norm(MO[o, o, v, v].copy()))
print("2: ", norm(tmp2))
print("2a: ", norm(tmp2a))
print("2b: ", norm(tmp2b))
print("3: ", norm(tmp3))
print("3a: ", norm(tmp3a))
print("3b: ", norm(tmp3b))
print("4: ", norm(tmp4))
print("5: ", norm(tmp5))
print("6: ", norm(tmp6))
print("6a: ", norm(tmp6a))
print("6b: ", norm(tmp6b))
print("7: ", norm(tmp7))
print("8: ", norm(tmp8))
"""
"""
ATT
0 1
N 4.648954 0.062237 -2.370046
C 5.222661 1.044161 -1.595124
N 4.354894 1.743856 -0.892815
C 3.124382 1.191641 -1.234691
C 1.796538 1.473710 -0.820053
N 1.477058 2.412334 0.063341
N 0.802690 0.730580 -1.347517
C 1.118897 -0.233683 -2.222372
N 2.315056 -0.597666 -2.682467
C 3.287489 0.159535 -2.145551
N -4.119880 1.175240 -1.668947
C -2.788993 0.852210 -1.845154
O -2.385787 0.134394 -2.748531
N -1.937862 1.401121 -0.916872
C -2.275607 2.205332 0.157303
O -1.389232 2.644961 0.899530
C -3.691851 2.470201 0.309209
C -4.156175 3.291113 1.475440
C -4.531960 1.955432 -0.607897
N -3.093123 -2.936903 -1.004080
C -1.789262 -2.710900 -0.630457
O -0.840457 -3.167912 -1.243704
N -1.636359 -1.922963 0.479694
C -2.636971 -1.336214 1.225506
O -2.346142 -0.645842 2.195441
C -3.987755 -1.598884 0.766076
C -5.137909 -0.995328 1.511021
C -4.143924 -2.378097 -0.316323
H 6.291440 1.207255 -1.586397
H 2.216641 2.881413 0.561742
H 0.519215 2.485870 0.406134
H 0.269720 -0.796087 -2.601331
H -0.930607 1.148159 -1.047409
H -5.240856 3.424662 1.455065
H -3.680063 4.275568 1.470584
H -3.878536 2.804296 2.415249
H -5.602410 2.125849 -0.555843
H -0.639080 -1.781127 0.770889
H -6.090057 -1.247239 1.035981
H -5.040838 0.094030 1.551165
H -5.161876 -1.348358 2.546381
H -5.126930 -2.611972 -0.712652
H 5.101053 -0.601273 -2.978111
H -4.769876 0.803247 -2.342853
H -3.229023 -3.459136 -1.855586
Benzene
0 1
C 1.4059535336 0.0000000000 0.0000000000
C 0.7029767633 1.2175914744 0.0000000000
C 0.7029767633 -1.2175914744 0.0000000000
C -0.7029767633 1.2175914744 0.0000000000
C -0.7029767633 -1.2175914744 0.0000000000
C -1.4059535336 0.0000000000 0.0000000000
H 2.5018761033 0.0000000000 0.0000000000
H 1.2509380519 2.1666882634 0.0000000000
H 1.2509380519 -2.1666882634 0.0000000000
H -1.2509380519 2.1666882634 0.0000000000
H -1.2509380519 -2.1666882634 0.0000000000
H -2.5018761033 0.0000000000 0.0000000000
Uracil
0 1
C 1.1965439001 1.1059975965 0.0000000000
C -0.0106406622 1.6974586473 0.0000000000
N -1.1759657685 0.9706327770 0.0000000000
C 1.2905520182 -0.3511811123 0.0000000000
N 0.0394261039 -0.9922273002 0.0000000000
C -1.2164849902 -0.4175249683 0.0000000000
O -2.2534478773 -1.0446838400 0.0000000000
O 2.3153668717 -1.0016569295 0.0000000000
H 2.1145824324 1.6760396163 0.0000000000
H -0.1369773173 2.7740930054 0.0000000000
H -2.0769371453 1.4242304202 0.0000000000
H 0.0555272212 -2.0045027192 0.0000000000
Formaldehyde
0 1
C -0.2581670178 0.0631333004 0.0000000000
O 0.9398801946 -0.1450331544 0.0000000000
H -0.8478178295 0.1654099608 -0.9426389633
H -0.8478178295 0.1654099608 0.9426389633
"""