-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfvno.py
298 lines (212 loc) · 10.9 KB
/
fvno.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import time
import numpy as np
from numpy import linalg as LA
from helper_cc import helper_ccenergy
from helper_cc import helper_cchbar
from helper_cc import helper_cclambda
from helper_cc import helper_ccpert
from helper_cc import helper_cclinresp
np.set_printoptions(precision=15, linewidth=200, suppress=True)
import psi4
#psi4.core.set_memory(int(2e9), False)
psi4.set_memory(int(8e9), False)
psi4.core.set_output_file('output.dat', False)
numpy_memory = 2
mol = psi4.geometry("""
O -0.028962160801 -0.694396279686 -0.049338350190
O 0.028962160801 0.694396279686 -0.049338350190
H 0.350498145881 -0.910645626300 0.783035421467
H -0.350498145881 0.910645626300 0.783035421467
noreorient
symmetry c1
""")
#O
#H 1 1.1
#H 1 1.1 2 104
#symmetry c1
#""")
psi4.set_options({'basis': 'cc-pVDZ'})
#psi4.set_options({'basis': '6-31g'})
# For numpy
compare_psi4 = True
print('Computing RHF reference.')
psi4.core.set_active_molecule(mol)
psi4.set_module_options('SCF', {'SCF_TYPE':'PK'})
psi4.set_module_options('SCF', {'E_CONVERGENCE':10e-13})
psi4.set_module_options('SCF', {'D_CONVERGENCE':10e-13})
rhf_e, rhf_wfn = psi4.energy('SCF', return_wfn=True)
print('RHF Final Energy % 16.10f\n' % rhf_e)
def fvno_procedure(mol, rhf_e, rhf_wfn, memory):
# Compute CCSD
ccsd = helper_ccenergy(mol, rhf_e, rhf_wfn, memory)
ccsd.compute_energy(r_conv=1e-10)
CCSDcorr_E = ccsd.ccsd_corr_e
CCSD_E = ccsd.ccsd_e
print('\nFinal CCSD correlation energy: % 16.15f' % CCSDcorr_E)
print('\nFinal CCSD correlation energy: % 16.15f' % CCSDcorr_E)
print('Total CCSD energy: % 16.15f' % CCSD_E)
cchbar = helper_cchbar(ccsd)
cclambda = helper_cclambda(ccsd,cchbar)
cclambda.compute_lambda(r_conv=1e-10)
omega = 0.07735713394560646
cart = {0:'X', 1: 'Y', 2: 'Z'}
Mu={}; Muij={}; Muab={}; Muia={}; Muai={};
Dij={}; Dab={}; Dia={}; Dai={};
ccpert = {}; polar_AB = {}; cclinresp = {};
dipole_array = ccsd.mints.ao_dipole()
for p in range(0,1):
string = "MU_" + cart[p]
Mu[string] = np.einsum('uj,vi,uv', ccsd.npC, ccsd.npC, np.asarray(dipole_array[p]))
ccpert[string] = helper_ccpert(string, Mu[string], ccsd, cchbar, cclambda, omega)
print('\nsolving right hand perturbed amplitudes for %s\n' % string)
ccpert[string].solve('right', r_conv=1e-10)
print('\nsolving left hand perturbed amplitudes for %s\n'% string)
ccpert[string].solve('left', r_conv=1e-10)
# Now that I have solved for x and y, I would like to calculate
# first order ccsd perturbed density. I am assuming only diagonal
# cases below
for p in range(0,1):
string = "MU_" + cart[p]
#Mu[string] = np.einsum('uj,vi,uv', ccsd.npC, ccsd.npC, np.asarray(dipole_array[p]))
Muij[string] = Mu[string][ccsd.slice_o, ccsd.slice_o]
Muab[string] = Mu[string][ccsd.slice_v, ccsd.slice_v]
Muia[string] = Mu[string][ccsd.slice_o, ccsd.slice_v]
Muai[string] = Mu[string][ccsd.slice_v, ccsd.slice_o]
# Occupied - Occupied block of Density #
Dij[string] = np.einsum('ia,ja->ij', ccpert[string].x1, cclambda.l1)
#Dij[string] += np.einsum('ia,ja->ij', ccsd.t1, ccpert[string].y1)
#Dij[string] += np.einsum('ikab,jkab->ij', ccsd.t2, ccpert[string].y2)
#Dij[string] += np.einsum('ikab,jkab->ij', ccpert[string].x2, cclambda.l2)
Dij[string] = -1.0 * Dij[string]
print(ccpert[string].x1)
print(cclambda.l1)
value = np.einsum('ia,ia->i', ccpert[string].x1, cclambda.l1)
print(value)
# Virtual - Virtual block of Density #
Dab[string] = np.einsum('ia,ib->ab', ccpert[string].x1, cclambda.l1)
Dab[string] += np.einsum('ia,ib->ab', ccsd.t1, ccpert[string].y1)
Dab[string] += np.einsum('ijac,ijbc->ab', ccsd.t2, ccpert[string].y2)
Dab[string] += np.einsum('ijac,ijbc->ab', ccpert[string].x2, cclambda.l2)
# Virtual - Occupied block of Density #
Dai[string] = ccpert[string].y1.swapaxes(0,1).copy()
# Occupied - Virtual block of Density #
# 1st term
Dia[string] = 2.0 * ccpert[string].x1.copy()
Dia[string] = 2.0 * ccpert[string].x1.copy()
# factor of 2.0 because of Y and L - derived using unitary group formalism
# 2nd term
Dia[string] += 2.0 * np.einsum('imae,me->ia', ccsd.t2, ccpert[string].y1)
Dia[string] += -1.0 * np.einsum('imea,me->ia', ccsd.t2, ccpert[string].y1)
Dia[string] += 2.0 * np.einsum('imae,me->ia', ccpert[string].x2, cclambda.l1)
Dia[string] += -1.0 * np.einsum('imea,me->ia', ccpert[string].x2, cclambda.l1)
# 3rd term
Dia[string] += -1.0 * np.einsum('ie,ma,me->ia', ccsd.t1, ccsd.t1, ccpert[string].y1)
Dia[string] += -1.0 * np.einsum('ie,ma,me->ia', ccsd.t1, ccpert[string].x1, cclambda.l1)
Dia[string] += -1.0 * np.einsum('ie,ma,me->ia', ccpert[string].x1, ccsd.t1, cclambda.l1)
# 4th term
Dia[string] += -1.0 * np.einsum('mnef,inef,ma->ia', cclambda.l2, ccsd.t2, ccpert[string].x1)
Dia[string] += -1.0 * np.einsum('mnef,inef,ma->ia', cclambda.l2, ccpert[string].x2, ccsd.t1)
Dia[string] += -1.0 * np.einsum('mnef,inef,ma->ia', ccpert[string].y2, ccsd.t2, ccsd.t1)
# 5th term
Dia[string] += -1.0 * np.einsum('mnef,mnaf,ie->ia', cclambda.l2, ccsd.t2, ccpert[string].x1)
Dia[string] += -1.0 * np.einsum('mnef,mnaf,ie->ia', cclambda.l2, ccpert[string].x2, ccsd.t1)
Dia[string] += -1.0 * np.einsum('mnef,mnaf,ie->ia', ccpert[string].y2, ccsd.t2, ccsd.t1)
# calculate response function <<A;B>> by pert_A * density_B
# Right now, these are only for diagonal elements.
print('\n Calculating Polarizability tensor from first order density approach:\n')
polar_density={};polar_density_ij={};polar_density_ab={};
polar_density_ia={};polar_density_ai={};polar_PQ={};
for p in range(0,1):
string = "MU_" + cart[p]
Dij[string] = 0.5 * (Dij[string] + Dij[string].T)
Dab[string] = 0.5 * (Dab[string] + Dab[string].T)
polar_density[string] = 0
print(string)
polar_density_ij[string] = np.einsum('ij,ij->', Dij[string], Muij[string])
polar_density[string] += polar_density_ij[string]
print('\nDij: %20.15lf\n' % polar_density_ij[string])
polar_density_ab[string] = np.einsum('ab,ab->', Dab[string], Muab[string])
polar_density[string] += polar_density_ab[string]
print('\nDab: %20.15lf\n' % polar_density_ab[string])
polar_density_ia[string] = np.einsum('ia,ia->', Dia[string], Muia[string])
polar_density[string] += polar_density_ia[string]
print('\nDia: %20.15lf\n' % polar_density_ia[string])
polar_density_ai[string] = np.einsum('ai,ai->', Dai[string], Muai[string])
polar_density[string] += polar_density_ai[string]
print('\nDai: %20.15lf\n' % polar_density_ai[string])
print('\npolar_density: %20.15lf\n' % polar_density[string])
print('\n Calculating Polarizability tensor from linear response function:\n')
for p in range(0,1):
str_p = "MU_" + cart[p]
for q in range(0,1):
if p == q:
str_q = "MU_" + cart[q]
str_pq = "<<" + str_p + ";" + str_q + ">>"
cclinresp[str_pq]= helper_cclinresp(cclambda, ccpert[str_p], ccpert[str_q])
polar_PQ[str_pq]= cclinresp[str_pq].linresp()
print(str_pq)
print('\n polar1 = %20.15lf \n' % cclinresp[str_pq].polar1)
print('\n polar2 = %20.15lf \n' % cclinresp[str_pq].polar2)
print('\n polar_response = %20.15lf \n' % polar_PQ[str_pq])
#print('\nPolarizability tensor (symmetrized):\n')
#
#for a in range(0,1):
# str_a = "MU_" + cart[a]
# for b in range(0,1):
# str_b = "MU_" + cart[b]
# str_ab = "<<" + str_a + ";" + str_b + ">>"
# #str_ba = "<<" + str_b + ";" + str_a + ">>"
# value = polar_AB[str_ab]
# #value = 0.5*(polar_AB[str_ab] + polar_AB[str_ba])
# polar_AB[str_ab] = value
# #polar_AB[str_ba] = value
# print(str_ab + ":" + str(value))
# Post-Processing of the densities to obtained `perturbed` natural orbitals
# Just pick only the x component for now. We will extend this later.
string = "MU_" + cart[0]
#Dij[string] = 0.5 * (Dij[string] + Dij[string].T)
#Dab[string] = 0.5 * (Dab[string] + Dab[string].T)
Evecij, Ematij = LA.eig(Dij[string])
Evecab, Ematab = LA.eig(Dab[string])
#
print('\n Printing eigenvalues of occupied-occupied block of first order CCSD density\n')
for item in Evecij:
print(item)
print('\n Printing eigenvalues of virtual-virtual block of first order CCSD density\n')
for item in Evecab:
print(item)
# create mu * densities now and compare their eigenvalues
muDij = {}; muDab = {};
muDij[string] = Muij[string] * Dij[string]
muDab[string] = Muab[string] * Dab[string]
Dij_gs = np.einsum('ia,ja->ij', ccsd.t1, cclambda.l1)
Dij_gs += np.einsum('ikab,jkab->ij', ccsd.t2, cclambda.l2)
Dij_gs = -1.0 * Dij_gs
print(Dij[string])
print(Dij[string].diagonal())
print(Dij_gs.diagonal())
DEvecij, DEmatij = LA.eig(muDij[string])
DEvecab, DEmatab = LA.eig(muDab[string])
print('\n Printing eigenvalues of occupied-occupied block of mu * first order CCSD density\n')
for item in DEvecij:
print(item)
print('\n Printing eigenvalues of virtual-virtual block of mu * first order CCSD density\n')
for item in DEvecab:
print(item)
Ematij = sort(Ematij, Evecij)
Ematab = sort(Ematab, Evecab)
DEmatij = sort(DEmatij, DEvecij)
DEmatab = sort(DEmatab, DEvecab)
return Ematij, Ematab, DEmatij, DEmatab
def sort(Emat, Evec):
tmp = Evec.copy()
tmp = abs(tmp)
idx = tmp.argsort()[::-1]
Evec = Evec[idx]
print('\n Printing sorted eigenvalues of occupied-occupied block of first order CCSD density\n')
for item in Evec:
print(item)
Emat = Emat[:,idx]
return Emat
Ematij, Ematab, DEmatij, DEmatab = fvno_procedure(mol, rhf_e, rhf_wfn, 4)
# Now I want to change the coefficient matrix appropriately#