-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtest.py
48 lines (38 loc) · 2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import argparse
import os
import torch
from torch.autograd import Variable
from model import G
from util import is_image, load_image, save_image
parser = argparse.ArgumentParser(description='DeepRendering-implementation')
parser.add_argument('--dataset', required=True, help='unity')
parser.add_argument('--model', type=str, required=True, help='model file')
parser.add_argument('--n_channel_input', type=int, default=3, help='input channel')
parser.add_argument('--n_channel_output', type=int, default=3, help='output channel')
parser.add_argument('--n_generator_filters', type=int, default=64, help="number of generator filters")
opt = parser.parse_args()
netG_model = torch.load(opt.model)
netG = G(opt.n_channel_input * 4, opt.n_channel_output, opt.n_generator_filters)
netG.load_state_dict(netG_model['state_dict_G'])
root_dir = 'dataset/{}/test/'.format(opt.dataset)
image_dir = 'dataset/{}/test/albedo'.format(opt.dataset)
image_filenames = [x for x in os.listdir(image_dir) if is_image(x)]
for image_name in image_filenames:
albedo_image = load_image(root_dir + 'albedo/' + image_name)
direct_image = load_image(root_dir + 'direct/' + image_name)
normal_image = load_image(root_dir + 'normal/' + image_name)
depth_image = load_image(root_dir + 'depth/' + image_name)
gt_image = load_image(root_dir + 'gt/' + image_name)
albedo = Variable(albedo_image).view(1, -1, 256, 256).cuda()
direct = Variable(direct_image).view(1, -1, 256, 256).cuda()
normal = Variable(normal_image).view(1, -1, 256, 256).cuda()
depth = Variable(depth_image).view(1, -1, 256, 256).cuda()
netG = netG.cuda()
out = netG(torch.cat((albedo, direct, normal, depth), 1))
out = out.cpu()
out_img = out.data[0]
if not os.path.exists("result"):
os.mkdir("result")
if not os.path.exists(os.path.join("result", opt.dataset)):
os.mkdir(os.path.join("result", opt.dataset))
save_image(out_img, "result/{}/{}".format(opt.dataset, image_name))