forked from tjqansthd/LapDepth-release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
185 lines (160 loc) · 6.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from __future__ import division
import shutil
import numpy as np
import torch
from path import Path
import datetime
from collections import OrderedDict
import torch.nn.functional as F
import math
import matplotlib.pyplot as plt
from IPython import display
import itertools
import torch.nn as nn
import os
from torchvision.utils import save_image
import imageio
def save_path_formatter(args, parser):
def is_default(key, value):
return value == parser.get_default(key)
args_dict = vars(args)
data_folder_name = str(Path(args_dict['data_path']).normpath().name)
folder_string = [data_folder_name]
if not is_default('epochs', args_dict['epochs']):
folder_string.append('{}epochs'.format(args_dict['epochs']))
keys_with_prefix = OrderedDict()
keys_with_prefix['epoch_size'] = 'epoch_size'
keys_with_prefix['batch_size'] = 'b'
keys_with_prefix['lr'] = 'lr'
for key, prefix in keys_with_prefix.items():
value = args_dict[key]
if not is_default(key, value):
folder_string.append('{}{}'.format(prefix, value))
save_path = Path(','.join(folder_string))
timestamp = datetime.datetime.now().strftime("%m-%d-%H:%M")
return save_path/timestamp
def tensor2array(tensor, max_value=255, colormap='rainbow'):
tensor = tensor.detach().cpu()
if max_value is None:
max_value = tensor.max().item()
if tensor.ndimension() == 2 or tensor.size(0) == 1:
try:
import cv2
if cv2.__version__.startswith('3'):
color_cvt = cv2.COLOR_BGR2RGB
else: # 2.4
color_cvt = cv2.cv.CV_BGR2RGB
if colormap == 'rainbow':
colormap = cv2.COLORMAP_RAINBOW
elif colormap == 'bone':
colormap = cv2.COLORMAP_BONE
array = (255*tensor.squeeze().numpy()/max_value).clip(0, 255).astype(np.uint8)
colored_array = cv2.applyColorMap(array, colormap)
array = cv2.cvtColor(colored_array, color_cvt).astype(np.float32)/255
except ImportError:
if tensor.ndimension() == 2:
tensor.unsqueeze_(2)
array = (tensor.expand(tensor.size(0), tensor.size(1), 3).numpy()/max_value).clip(0,1)
elif tensor.ndimension() == 3:
assert(tensor.size(0) == 3)
array = 0.5 + tensor.numpy()*0.5
array = array.transpose(1,2,0)
return array
def save_depth_tensor(tensor_img,img_dir,filename):
result = tensor_img.cpu().detach().numpy()
max_value = result.max()
if (result.shape[0]==1):
result = result.squeeze(0)
result = result/max_value
elif (result.ndim==2):
result = result/max_value
else:
print("file dimension is not proper!!")
exit()
imageio.imwrite(img_dir + '/' + filename,result)
def plot_loss(data, apath, epoch,train,filename):
axis = np.linspace(1, epoch, epoch)
label = 'Total Loss'
fig = plt.figure()
plt.title(label)
plt.plot(axis, np.array(data), label=label)
plt.legend()
if train is False:
plt.xlabel('Epochs')
else:
plt.xlabel('x100 = Iteration')
plt.ylabel('Loss')
plt.grid(True)
plt.savefig(os.path.join(apath, filename))
plt.close(fig)
plt.close('all')
def train_plot(save_dir,tot_loss, rmse, loss_list, rmse_list, tot_loss_dir,rmse_dir,loss_pdf, rmse_pdf, count,istrain):
open_type = 'a' if os.path.exists(tot_loss_dir) else 'w'
loss_log_file = open(tot_loss_dir, open_type)
rmse_log_file = open(rmse_dir,open_type)
loss_list.append(tot_loss)
rmse_list.append(rmse)
plot_loss(loss_list, save_dir, count, istrain, loss_pdf)
plot_loss(rmse_list, save_dir, count, istrain, rmse_pdf)
loss_log_file.write(('%.5f'%tot_loss) + '\n')
rmse_log_file.write(('%.5f'%rmse) + '\n')
loss_log_file.close()
rmse_log_file.close()
def validate_plot(save_dir,tot_loss, loss_list, tot_loss_dir,loss_pdf, count,istrain):
open_type = 'a' if os.path.exists(tot_loss_dir) else 'w'
loss_log_file = open(tot_loss_dir, open_type)
loss_list.append(tot_loss)
plot_loss(loss_list, save_dir, count, istrain, loss_pdf)
loss_log_file.write(('%.5f'%tot_loss) + '\n')
loss_log_file.close()
def imgrad(img):
img = torch.mean(img, 1, True)
fx = np.array([[1,0,-1],[2,0,-2],[1,0,-1]])
conv1 = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
weight = torch.from_numpy(fx).float().unsqueeze(0).unsqueeze(0)
if img.is_cuda:
weight = weight.cuda()
conv1.weight = nn.Parameter(weight)
grad_x = conv1(img)
fy = np.array([[1,2,1],[0,0,0],[-1,-2,-1]])
conv2 = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
weight = torch.from_numpy(fy).float().unsqueeze(0).unsqueeze(0)
if img.is_cuda:
weight = weight.cuda()
conv2.weight = nn.Parameter(weight)
grad_y = conv2(img)
return grad_y, grad_x
def imgrad_loss(pred, gt, mask=None):
N,C,_,_ = pred.size()
grad_y, grad_x = imgrad(pred)
grad_y_gt, grad_x_gt = imgrad(gt)
grad_y_diff = torch.abs(grad_y - grad_y_gt)
grad_x_diff = torch.abs(grad_x - grad_x_gt)
if mask is not None:
grad_y_diff[~mask] = 0.1*grad_y_diff[~mask]
grad_x_diff[~mask] = 0.1*grad_x_diff[~mask]
return (torch.mean(grad_y_diff) + torch.mean(grad_x_diff))
def BerHu_loss(valid_out, valid_gt):
diff = valid_out - valid_gt
diff_abs = torch.abs(diff)
c = 0.2*torch.max(diff_abs.detach())
mask2 = torch.gt(diff_abs.detach(),c)
diff_abs[mask2] = (diff_abs[mask2]**2 +(c*c))/(2*c)
return diff_abs.mean()
def scale_invariant_loss(valid_out, valid_gt):
logdiff = torch.log(valid_out) - torch.log(valid_gt)
scale_inv_loss = torch.sqrt((logdiff ** 2).mean() - 0.85*(logdiff.mean() ** 2))*10.0
return scale_inv_loss
def make_mask(depths, crop_mask, dataset):
# masking valied area
if dataset == 'KITTI':
valid_mask = depths > 0.001
else:
valid_mask = depths > 0.001
if dataset == "KITTI":
if(crop_mask.size(0) != valid_mask.size(0)):
crop_mask = crop_mask[0:valid_mask.size(0),:,:,:]
final_mask = crop_mask|valid_mask
else:
final_mask = valid_mask
return valid_mask, final_mask