-
-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathI2CManager_STM32.h
520 lines (471 loc) · 22.1 KB
/
I2CManager_STM32.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
/*
* © 2022-24 Paul M Antoine
* © 2023, Neil McKechnie
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef I2CMANAGER_STM32_H
#define I2CMANAGER_STM32_H
#include <Arduino.h>
#include "I2CManager.h"
#include "I2CManager_NonBlocking.h" // to satisfy intellisense
#include <wiring_private.h>
#include "stm32f4xx_hal_rcc.h"
/*****************************************************************************
* STM32F4xx I2C native driver support
*
* Nucleo-64 and Nucleo-144 boards all use I2C1 as the default I2C peripheral
* Later we may wish to support other STM32 boards, allow use of an alternate
* I2C bus, or more than one I2C bus on the STM32 architecture
*****************************************************************************/
#if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32)
#if defined(ARDUINO_NUCLEO_F401RE) || defined(ARDUINO_NUCLEO_F411RE) || defined(ARDUINO_NUCLEO_F446RE) \
|| defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F446ZE) \
|| defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
// Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely all Nucleo-64
// and Nucleo-144 variants
I2C_TypeDef *s = I2C1;
// In init we will ask the STM32 HAL layer for the configured APB1 clock frequency in Hz
uint32_t APB1clk1; // Peripheral Input Clock speed in Hz.
uint32_t i2c_MHz; // Peripheral Input Clock speed in MHz.
// IRQ handler for I2C1, replacing the weak definition in the STM32 HAL
extern "C" void I2C1_EV_IRQHandler(void) {
I2CManager.handleInterrupt();
}
extern "C" void I2C1_ER_IRQHandler(void) {
I2CManager.handleInterrupt();
}
#else
#warning STM32 board selected is not yet supported - so I2C1 peripheral is not defined
#endif
#endif
// Peripheral Input Clock speed in MHz.
// For STM32F446RE, the speed is 45MHz. Ideally, this should be determined
// at run-time from the APB1 clock, as it can vary from STM32 family to family.
// #define I2C_PERIPH_CLK 45
// I2C SR1 Status Register #1 bit definitions for convenience
// #define I2C_SR1_SMBALERT (1<<15) // SMBus alert
// #define I2C_SR1_TIMEOUT (1<<14) // Timeout of Tlow error
// #define I2C_SR1_PECERR (1<<12) // PEC error in reception
// #define I2C_SR1_OVR (1<<11) // Overrun/Underrun error
// #define I2C_SR1_AF (1<<10) // Acknowledge failure
// #define I2C_SR1_ARLO (1<<9) // Arbitration lost (master mode)
// #define I2C_SR1_BERR (1<<8) // Bus error (misplaced start or stop condition)
// #define I2C_SR1_TxE (1<<7) // Data register empty on transmit
// #define I2C_SR1_RxNE (1<<6) // Data register not empty on receive
// #define I2C_SR1_STOPF (1<<4) // Stop detection (slave mode)
// #define I2C_SR1_ADD10 (1<<3) // 10 bit header sent
// #define I2C_SR1_BTF (1<<2) // Byte transfer finished - data transfer done
// #define I2C_SR1_ADDR (1<<1) // Address sent (master) or matched (slave)
// #define I2C_SR1_SB (1<<0) // Start bit (master mode) 1=start condition generated
// I2C CR1 Control Register #1 bit definitions for convenience
// #define I2C_CR1_SWRST (1<<15) // Software reset - places peripheral under reset
// #define I2C_CR1_ALERT (1<<13) // SMBus alert assertion
// #define I2C_CR1_PEC (1<<12) // Packet Error Checking transfer in progress
// #define I2C_CR1_POS (1<<11) // Acknowledge/PEC Postion (for data reception in PEC mode)
// #define I2C_CR1_ACK (1<<10) // Acknowledge enable - ACK returned after byte is received (address or data)
// #define I2C_CR1_STOP (1<<9) // STOP generated
// #define I2C_CR1_START (1<<8) // START generated
// #define I2C_CR1_NOSTRETCH (1<<7) // Clock stretching disable (slave mode)
// #define I2C_CR1_ENGC (1<<6) // General call (broadcast) enable (address 00h is ACKed)
// #define I2C_CR1_ENPEC (1<<5) // PEC Enable
// #define I2C_CR1_ENARP (1<<4) // ARP enable (SMBus)
// #define I2C_CR1_SMBTYPE (1<<3) // SMBus type, 1=host, 0=device
// #define I2C_CR1_SMBUS (1<<1) // SMBus mode, 1=SMBus, 0=I2C
// #define I2C_CR1_PE (1<<0) // I2C Peripheral enable
// States of the STM32 I2C driver state machine
enum {TS_IDLE,TS_START,TS_W_ADDR,TS_W_DATA,TS_W_STOP,TS_R_ADDR,TS_R_DATA,TS_R_STOP};
/***************************************************************************
* Set I2C clock speed register. This should only be called outside of
* a transmission. The I2CManagerClass::_setClock() function ensures
* that it is only called at the beginning of an I2C transaction.
***************************************************************************/
void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
// Calculate a rise time appropriate to the requested bus speed
// Use 10x the rise time spec to enable integer divide of 50ns clock period
uint16_t t_rise;
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
// writes to CR1 while STOP is being executed!
// Disable the I2C device, as TRISE can only be programmed whilst disabled
s->CR1 &= ~(I2C_CR1_PE); // Disable I2C
s->CR1 |= I2C_CR1_SWRST; // reset the I2C
asm("nop"); // wait a bit... suggestion from online!
s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
if (i2cClockSpeed > 100000UL)
{
// if (i2cClockSpeed > 400000L)
// i2cClockSpeed = 400000L;
t_rise = 300; // nanoseconds
}
else
{
// i2cClockSpeed = 100000L;
t_rise = 1000; // nanoseconds
}
// Configure the rise time register - max allowed tRISE is 1000ns,
// so value = 1000ns * I2C_PERIPH_CLK MHz / 1000 + 1.
s->TRISE = (t_rise * i2c_MHz / 1000) + 1;
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
// Bit 14: Duty, fast mode duty cycle (use 2:1)
// Bit 11-0: FREQR
// if (i2cClockSpeed > 400000UL) {
// // In fast mode plus, I2C period is 3 * CCR * TPCLK1.
// // s->CCR &= ~(0x3000); // Clear all bits except 12 and 13 which must remain per reset value
// s->CCR = APB1clk1 / 3 / i2cClockSpeed; // Set I2C clockspeed to start!
// s->CCR |= 0xC000; // We need Fast Mode AND DUTY bits set
// } else {
// In standard and fast mode, I2C period is 2 * CCR * TPCLK1
s->CCR &= ~(0x3000); // Clear all bits except 12 and 13 which must remain per reset value
s->CCR |= (APB1clk1 / 2 / i2cClockSpeed); // Set I2C clockspeed to start!
// s->CCR |= (i2c_MHz * 500 / (i2cClockSpeed / 1000)); // Set I2C clockspeed to start!
// if (i2cClockSpeed > 100000UL)
// s->CCR |= 0xC000; // We need Fast Mode bits set as well
// }
// DIAG(F("I2C_init() peripheral clock is now: %d, full reg is %x"), (s->CR2 & 0xFF), s->CR2);
// DIAG(F("I2C_init() peripheral CCR is now: %d"), s->CCR);
// DIAG(F("I2C_init() peripheral TRISE is now: %d"), s->TRISE);
// Enable the I2C master mode
s->CR1 |= I2C_CR1_PE; // Enable I2C
}
/***************************************************************************
* Initialise I2C registers.
***************************************************************************/
void I2CManagerClass::I2C_init()
{
// Query the clockspeed from the STM32 HAL layer
APB1clk1 = HAL_RCC_GetPCLK1Freq();
i2c_MHz = APB1clk1 / 1000000UL;
// DIAG(F("I2C_init() peripheral clock speed is: %d"), i2c_MHz);
// Enable clocks
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN;//(1 << 21); // Enable I2C CLOCK
// Reset the I2C1 peripheral to initial state
RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_I2C1RST;
// Standard I2C pins are SCL on PB8 and SDA on PB9
RCC->AHB1ENR |= (1<<1); // Enable GPIOB CLOCK for PB8/PB9
// Bits (17:16)= 1:0 --> Alternate Function for Pin PB8;
// Bits (19:18)= 1:0 --> Alternate Function for Pin PB9
GPIOB->MODER &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all MODER bits for PB8 and PB9
GPIOB->MODER |= (2<<(8*2)) | (2<<(9*2)); // PB8 and PB9 set to ALT function
GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability
GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode
GPIOB->PUPDR &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all PUPDR bits for PB8 and PB9
// GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
// Alt Function High register routing pins PB8 and PB9 for I2C1:
// Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8
// Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9
GPIOB->AFR[1] &= ~((15<<0) | (15<<4)); // Clear all AFR bits for PB8 on low nibble, PB9 on next nibble up
GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up
// Software reset the I2C peripheral
I2C1->CR1 &= ~I2C_CR1_PE; // Disable I2C1 peripheral
s->CR1 |= I2C_CR1_SWRST; // reset the I2C
asm("nop"); // wait a bit... suggestion from online!
s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
// Clear all bits in I2C CR2 register except reserved bits
s->CR2 &= 0xE000;
// Set I2C peripheral clock frequency
// s->CR2 |= I2C_PERIPH_CLK;
s->CR2 |= i2c_MHz;
// DIAG(F("I2C_init() peripheral clock is now: %d"), s->CR2);
// set own address to 00 - not used in master mode
I2C1->OAR1 = (1 << 14); // bit 14 should be kept at 1 according to the datasheet
#if defined(I2C_USE_INTERRUPTS)
// Setting NVIC
NVIC_SetPriority(I2C1_EV_IRQn, 1); // Match default priorities
NVIC_EnableIRQ(I2C1_EV_IRQn);
NVIC_SetPriority(I2C1_ER_IRQn, 1); // Match default priorities
NVIC_EnableIRQ(I2C1_ER_IRQn);
// CR2 Interrupt Settings
// Bit 15-13: reserved
// Bit 12: LAST - DMA last transfer
// Bit 11: DMAEN - DMA enable
// Bit 10: ITBUFEN - Buffer interrupt enable
// Bit 9: ITEVTEN - Event interrupt enable
// Bit 8: ITERREN - Error interrupt enable
// Bit 7-6: reserved
// Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz)
s->CR2 |= (I2C_CR2_ITBUFEN | I2C_CR2_ITEVTEN | I2C_CR2_ITERREN); // Enable Buffer, Event and Error interrupts
#endif
// DIAG(F("I2C_init() setting initial I2C clock to 100KHz"));
// Calculate baudrate and set default rate for now
// Configure the Clock Control Register for 100KHz SCL frequency
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
// Bit 14: Duty, fast mode duty cycle
// Bit 11-0: so CCR divisor would be clk / 2 / 100000 (where clk is in Hz)
// s->CCR = I2C_PERIPH_CLK * 5;
s->CCR &= ~(0x3000); // Clear all bits except 12 and 13 which must remain per reset value
s->CCR |= (APB1clk1 / 2 / 100000UL); // Set a default of 100KHz I2C clockspeed to start!
// Configure the rise time register - max allowed is 1000ns, so value = 1000ns * I2C_PERIPH_CLK MHz / 1000 + 1.
s->TRISE = (1000 * i2c_MHz / 1000) + 1;
// DIAG(F("I2C_init() peripheral clock is now: %d, full reg is %x"), (s->CR2 & 0xFF), s->CR2);
// DIAG(F("I2C_init() peripheral CCR is now: %d"), s->CCR);
// DIAG(F("I2C_init() peripheral TRISE is now: %d"), s->TRISE);
// Enable the I2C master mode
s->CR1 |= I2C_CR1_PE; // Enable I2C
}
/***************************************************************************
* Initiate a start bit for transmission.
***************************************************************************/
void I2CManagerClass::I2C_sendStart() {
// Set counters here in case this is a retry.
rxCount = txCount = 0;
// On a single-master I2C bus, the start bit won't be sent until the bus
// state goes to IDLE so we can request it without waiting. On a
// multi-master bus, the bus may be BUSY under control of another master,
// in which case we can avoid some arbitration failures by waiting until
// the bus state is IDLE. We don't do that here.
//while (s->SR2 & I2C_SR2_BUSY) {}
// Check there's no STOP still in progress. If we OR the START bit into CR1
// and the STOP bit is already set, we could output multiple STOP conditions.
while (s->CR1 & I2C_CR1_STOP) {} // Wait for STOP bit to reset
s->CR2 |= (I2C_CR2_ITEVTEN | I2C_CR2_ITERREN); // Enable interrupts
s->CR2 &= ~I2C_CR2_ITBUFEN; // Don't enable buffer interupts yet.
s->CR1 &= ~I2C_CR1_POS; // Clear the POS bit
s->CR1 |= (I2C_CR1_ACK | I2C_CR1_START); // Enable the ACK and generate START
transactionState = TS_START;
}
/***************************************************************************
* Initiate a stop bit for transmission (does not interrupt)
***************************************************************************/
void I2CManagerClass::I2C_sendStop() {
s->CR1 |= I2C_CR1_STOP; // Stop I2C
}
/***************************************************************************
* Close I2C down
***************************************************************************/
void I2CManagerClass::I2C_close() {
I2C_sendStop();
// Disable the I2C master mode and wait for sync
s->CR1 &= ~I2C_CR1_PE; // Disable I2C peripheral
// Should never happen, but wait for up to 500us only.
unsigned long startTime = micros();
while ((s->CR1 & I2C_CR1_PE) != 0) {
if ((int32_t)(micros() - startTime) >= 500) break;
}
NVIC_DisableIRQ(I2C1_EV_IRQn);
NVIC_DisableIRQ(I2C1_ER_IRQn);
}
/***************************************************************************
* Main state machine for I2C, called from interrupt handler or,
* if I2C_USE_INTERRUPTS isn't defined, from the I2CManagerClass::loop() function
* (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()).
***************************************************************************/
void I2CManagerClass::I2C_handleInterrupt() {
volatile uint16_t temp_sr1, temp_sr2;
temp_sr1 = s->SR1;
// Check for errors first
if (temp_sr1 & (I2C_SR1_AF | I2C_SR1_ARLO | I2C_SR1_BERR)) {
// Check which error flag is set
if (temp_sr1 & I2C_SR1_AF)
{
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
I2C_sendStop(); // Clear the bus
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
state = I2C_STATE_COMPLETED;
}
else if (temp_sr1 & I2C_SR1_ARLO)
{
// Arbitration lost, restart
s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO
I2C_sendStart(); // Reinitiate request
transactionState = TS_START;
}
else if (temp_sr1 & I2C_SR1_BERR)
{
// Bus error
s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR
I2C_sendStop(); // Clear the bus
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_BUS_ERROR;
state = I2C_STATE_COMPLETED;
}
}
else {
// No error flags, so process event according to current state.
switch (transactionState) {
case TS_START:
if (temp_sr1 & I2C_SR1_SB) {
// Event EV5
// Start bit has been sent successfully and we have the bus.
// If anything to send, initiate write. Otherwise initiate read.
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend)) {
// Send address with read flag (1) or'd in
s->DR = (deviceAddress << 1) | 1; // send the address
transactionState = TS_R_ADDR;
} else {
// Send address with write flag (0) or'd in
s->DR = (deviceAddress << 1) | 0; // send the address
transactionState = TS_W_ADDR;
}
}
// SB bit is cleared by writing to DR (already done).
break;
case TS_W_ADDR:
if (temp_sr1 & I2C_SR1_ADDR) {
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
// Event EV6
// Address sent successfully, device has ack'd in response.
if (!bytesToSend) {
I2C_sendStop();
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
} else {
// Put one byte into DR to load shift register.
s->DR = sendBuffer[txCount++];
bytesToSend--;
if (bytesToSend) {
// Put another byte to load DR
s->DR = sendBuffer[txCount++];
bytesToSend--;
}
if (!bytesToSend) {
// No more bytes to send.
// The TXE interrupt occurs when the DR is empty, and the BTF interrupt
// occurs when the shift register is also empty (one character later).
// To avoid repeated TXE interrupts during this time, we disable TXE interrupt.
s->CR2 &= ~I2C_CR2_ITBUFEN; // Wait for BTF interrupt, disable TXE interrupt
transactionState = TS_W_STOP;
} else {
// More data remaining to send after this interrupt, enable TXE interrupt.
s->CR2 |= I2C_CR2_ITBUFEN;
transactionState = TS_W_DATA;
}
}
}
break;
case TS_W_DATA:
if (temp_sr1 & I2C_SR1_TXE) {
// Event EV8_1/EV8
// Transmitter empty, write a byte to it.
if (bytesToSend) {
s->DR = sendBuffer[txCount++];
bytesToSend--;
if (!bytesToSend) {
s->CR2 &= ~I2C_CR2_ITBUFEN; // Disable TXE interrupt
transactionState = TS_W_STOP;
}
}
}
break;
case TS_W_STOP:
if (temp_sr1 & I2C_SR1_BTF) {
// Event EV8_2
// Done, last character sent. Anything to receive?
if (bytesToReceive) {
I2C_sendStart();
// NOTE: Three redundant BTF interrupts take place between the
// first BTF interrupt and the START interrupt. I've tried all sorts
// of ways to eliminate them, and the only thing that worked for
// me was to loop until the BTF bit becomes reset. Either way,
// it's a waste of processor time. Anyone got a solution?
//while (s->SR1 && I2C_SR1_BTF) {}
transactionState = TS_START;
} else {
I2C_sendStop();
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
}
s->SR1 &= I2C_SR1_BTF; // Clear BTF interrupt
}
break;
case TS_R_ADDR:
if (temp_sr1 & I2C_SR1_ADDR) {
// Event EV6
// Address sent for receive.
// The next bit is different depending on whether there are
// 1 byte, 2 bytes or >2 bytes to be received, in accordance with the
// Programmers Reference RM0390.
if (bytesToReceive == 1) {
// Receive 1 byte
s->CR1 &= ~I2C_CR1_ACK; // Disable ack
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
// Next step will occur after a RXNE interrupt, so enable it
s->CR2 |= I2C_CR2_ITBUFEN;
transactionState = TS_R_STOP;
} else if (bytesToReceive == 2) {
// Receive 2 bytes
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK for final byte
s->CR1 |= I2C_CR1_POS; // set POS flag to delay effect of ACK flag
// Next step will occur after a BTF interrupt, so disable RXNE interrupt
s->CR2 &= ~I2C_CR2_ITBUFEN;
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
transactionState = TS_R_STOP;
} else {
// >2 bytes, just wait for bytes to come in and ack them for the time being
// (ack flag has already been set).
// Next step will occur after a BTF interrupt, so disable RXNE interrupt
s->CR2 &= ~I2C_CR2_ITBUFEN;
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
transactionState = TS_R_DATA;
}
}
break;
case TS_R_DATA:
// Event EV7/EV7_1
if (temp_sr1 & I2C_SR1_BTF) {
// Byte received in receiver - read next byte
if (bytesToReceive == 3) {
// Getting close to the last byte, so a specific sequence is recommended.
s->CR1 &= ~I2C_CR1_ACK; // Reset ack for next byte received.
transactionState = TS_R_STOP;
}
receiveBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive--;
}
break;
case TS_R_STOP:
if (temp_sr1 & I2C_SR1_BTF) {
// Event EV7 (last one)
// When we've got here, the receiver has got the last two bytes
// (or one byte, if only one byte is being received),
// and NAK has already been sent, so we need to read from the receiver.
if (bytesToReceive) {
if (bytesToReceive > 1)
I2C_sendStop();
while(bytesToReceive) {
receiveBuffer[rxCount++] = s->DR; // Store received byte(s)
bytesToReceive--;
}
// Finish.
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
}
} else if (temp_sr1 & I2C_SR1_RXNE) {
if (bytesToReceive == 1) {
// One byte on a single-byte transfer. Ack has already been set.
I2C_sendStop();
receiveBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive--;
// Finish.
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
} else
s->SR1 &= I2C_SR1_RXNE; // Acknowledge interrupt
}
break;
}
// If we've received an interrupt at any other time, we're not interested so clear it
// to prevent it recurring ad infinitum.
s->SR1 = 0;
}
}
#endif /* I2CMANAGER_STM32_H */