Skip to content

Commit 1c04a52

Browse files
Merge reversion of variance computation PR #7 from mikucionisaau/revert-variance
Revert the new variance computation
2 parents 9358116 + 8341ca8 commit 1c04a52

6 files changed

+63
-64
lines changed

src/MLearning.cpp

+13-15
Original file line numberDiff line numberDiff line change
@@ -255,10 +255,10 @@ namespace prlearn {
255255
auto c = clouds[s._cloud]._nodes[s._nodes[i]]._q.avg();
256256
fut = std::min(fut, c);
257257
if (c == best)
258-
var = std::min(var, clouds[s._cloud]._nodes[s._nodes[i]]._q.variance());
258+
var = std::min(var, clouds[s._cloud]._nodes[s._nodes[i]]._q._variance);
259259
else if ((c < best && minimize) || (c > best && !minimize)) {
260260
best = c;
261-
var = clouds[s._cloud]._nodes[s._nodes[i]]._q.variance();
261+
var = clouds[s._cloud]._nodes[s._nodes[i]]._q._variance;
262262
}
263263
}
264264
}
@@ -275,8 +275,8 @@ namespace prlearn {
275275
auto v = s._variance[d];
276276
v.first.avg() += best;
277277
v.second.avg() += best;
278-
v.first.set_variance(std::max(v.first.variance(), var));
279-
v.second.set_variance(std::max(v.second.variance(), var));
278+
v.first._variance = std::max(v.first._variance, var);
279+
v.second._variance = std::max(v.second._variance, var);
280280
tmpq[d].first.addPoints(v.first.cnt(), v.first.avg());
281281
tmpq[d].second.addPoints(v.second.cnt(), v.second.avg());
282282
mean.addPoints(v.first.cnt(), v.first.avg());
@@ -288,8 +288,8 @@ namespace prlearn {
288288
auto v = s._old[d];
289289
v.first.avg() += best;
290290
v.second.avg() += best;
291-
v.first.set_variance(std::max(v.first.variance(), var));
292-
v.second.set_variance(std::max(v.second.variance(), var));
291+
v.first._variance = std::max(v.first._variance, var);
292+
v.second._variance = std::max(v.second._variance, var);
293293
old_mean.addPoints(v.first.cnt(), v.first.avg());
294294
old_mean.addPoints(v.second.cnt(), v.second.avg());
295295
old_var.push_back(v.first);
@@ -305,7 +305,7 @@ namespace prlearn {
305305
for (auto& s : sample_qvar) {
306306
{
307307
const auto dif = std::abs(s.avg() - mean._avg);
308-
const auto std = std::sqrt(s.variance());
308+
const auto std = std::sqrt(s._variance);
309309
auto var = (std::pow(dif + std, 2.0) + std::pow(dif - std, 2.0)) / 2.0;
310310
svar.addPoints(s.cnt(), var);
311311
}
@@ -317,7 +317,7 @@ namespace prlearn {
317317
}
318318
{
319319
const auto dif = std::abs(s.avg() - dmin);
320-
const auto std = std::sqrt(s.variance());
320+
const auto std = std::sqrt(s._variance);
321321
auto var = (std::pow(dif + std, 2.0) + std::pow(dif - std, 2.0)) / 2.0;
322322
vars[id].addPoints(s.cnt(), var);
323323
}
@@ -328,20 +328,18 @@ namespace prlearn {
328328

329329
for (auto& s : old_var) {
330330
const auto dif = std::abs(s.avg() - old_mean._avg);
331-
const auto std = std::sqrt(s.variance());
331+
const auto std = std::sqrt(s._variance);
332332
auto var = (std::pow(dif + std, 2.0) + std::pow(dif - std, 2.0)) / 2.0;
333333
ovar.addPoints(s.cnt(), var);
334334
}
335335

336336
for (size_t i = 0; i < dimen; ++i) {
337-
tmpq[i].first.set_variance(vars[i]._avg);
338-
tmpq[i].second.set_variance(vars[i + dimen]._avg);
337+
tmpq[i].first._variance = vars[i]._avg;
338+
tmpq[i].second._variance = vars[i + dimen]._avg;
339339
}
340340

341-
qvar_t nq(mean._avg, mean._cnt / (dimen * 2), 0);
342-
nq.set_variance(svar._avg);
343-
qvar_t oq(old_mean._avg, old_mean._cnt / (dimen * 2), 0);
344-
oq.set_variance(ovar._avg);
341+
qvar_t nq(mean._avg, mean._cnt / (dimen * 2), svar._avg);
342+
qvar_t oq(old_mean._avg, old_mean._cnt / (dimen * 2), ovar._avg);
345343
return std::make_pair(nq, oq);
346344
}
347345

src/RefinementTree.cpp

+3-3
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@ namespace prlearn {
6969
return qvar_t(std::numeric_limits<double>::quiet_NaN(), 0, 0);
7070
auto n = _nodes[res->_nid].get_leaf(point, res->_nid, _nodes);
7171
auto& node = _nodes[n];
72-
return qvar_t(node._predictor._q.avg(), node._predictor._cnt, node._predictor._q.squared());
72+
return qvar_t(node._predictor._q.avg(), node._predictor._cnt, node._predictor._q._variance);
7373
}
7474

7575
double RefinementTree::getBestQ(const double* point, bool minimization, size_t* next_labels, size_t n_labels) const {
@@ -231,12 +231,12 @@ namespace prlearn {
231231
if (nodes[slow]._predictor._q.cnt() == 0) {
232232
nodes[slow]._predictor._q.cnt() = 1;
233233
nodes[slow]._predictor._q.avg() = oq.avg();
234-
nodes[slow]._predictor._q.squared() = std::pow(oq.avg(), 2.0);
234+
nodes[slow]._predictor._q._variance = 0;
235235
}
236236
if (nodes[shigh]._predictor._q.cnt() == 0) {
237237
nodes[shigh]._predictor._q.cnt() = 1;
238238
nodes[shigh]._predictor._q.avg() = oq.avg();
239-
nodes[shigh]._predictor._q.squared() = std::pow(oq.avg(), 2.0);
239+
nodes[shigh]._predictor._q._variance = 0;
240240
}
241241
}
242242
nodes[shigh]._predictor._cnt = nodes[shigh]._predictor._q.cnt();

src/SimpleMLearning.cpp

+2-2
Original file line numberDiff line numberDiff line change
@@ -110,14 +110,14 @@ namespace prlearn {
110110
for(auto& s : n._succssors)
111111
{
112112
const auto dif = std::abs(s._cost.avg() - nq._avg);
113-
const auto std = std::sqrt(s._cost.variance());
113+
const auto std = std::sqrt(s._cost._variance);
114114
auto var = (std::pow(dif + std, 2.0) + std::pow(dif - std, 2.0)) / 2.0;
115115
nv.addPoints(s._cost.cnt(), var);
116116
}
117117
n._q = qvar_t(nq._avg, nq._cnt, nv._avg);
118118
if ((minimization && n._q.avg() <= rq.avg()) ||
119119
(!minimization && n._q.avg() >= rq.avg())) {
120-
if(n._q.avg() != rq.avg() || n._q.variance() < rq.variance() || n._q.cnt() > rq.cnt())
120+
if(n._q.avg() != rq.avg() || n._q._variance < rq._variance || n._q.cnt() > rq.cnt())
121121
rq = n._q;
122122
}
123123
}

src/SimpleRegressor.h

+1-1
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ namespace prlearn {
4747
auto res = std::lower_bound(std::begin(_labels), std::end(_labels), lf);
4848

4949
if (res != std::end(_labels) && res->_label == label)
50-
return qvar_t{res->_value.avg(), (double)res->_cnt, res->_value.squared()};
50+
return qvar_t{res->_value.avg(), (double)res->_cnt, res->_value._variance};
5151
else
5252
return qvar_t{std::numeric_limits<double>::quiet_NaN(), 0, 0};
5353
}

src/structs.cpp

+36-13
Original file line numberDiff line numberDiff line change
@@ -1,21 +1,21 @@
11
/*
22
* Copyright Peter G. Jensen
3-
*
3+
*
44
* This program is free software: you can redistribute it and/or modify
55
* it under the terms of the GNU Lesser General Public License as published by
66
* the Free Software Foundation, either version 3 of the License, or
77
* (at your option) any later version.
8-
*
8+
*
99
* This program is distributed in the hope that it will be useful,
1010
* but WITHOUT ANY WARRANTY; without even the implied warranty of
1111
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1212
* GNU General Public License for more details.
13-
*
13+
*
1414
* You should have received a copy of the GNU Lesser General Public License
1515
* along with this program. If not, see <http://www.gnu.org/licenses/>.
1616
*/
1717

18-
/*
18+
/*
1919
* File: structs.cpp
2020
* Author: Peter G. Jensen
2121
*
@@ -44,7 +44,7 @@ namespace prlearn {
4444
void qvar_t::print(std::ostream& stream) const {
4545
stream << "[";
4646
stream << (*(avg_t*)this);
47-
stream << ", " << variance() << "]";
47+
stream << ", " << _variance << "]";
4848
}
4949

5050
std::ostream& operator<<(std::ostream& o, const qvar_t& v) {
@@ -59,25 +59,48 @@ namespace prlearn {
5959
return a;
6060
qvar_t res = a;
6161
res.addPoints(b._cnt, b._avg);
62-
res._sq = (a._sq * (a._cnt / res._cnt)) + (b._sq * (b._cnt / res._cnt));
62+
const auto adif = std::abs(res._avg - a._avg);
63+
const auto bdif = std::abs(res._avg - b._avg);
64+
const auto astd = std::sqrt(a._variance);
65+
const auto bstd = std::sqrt(b._variance);
66+
auto ca = std::pow(adif + astd, 2.0) + std::pow(adif - astd, 2.0);
67+
auto cb = std::pow(bdif + bstd, 2.0) + std::pow(bdif - bstd, 2.0);
68+
avg_t tmp;
69+
tmp.addPoints(a._cnt, ca / 2.0);
70+
tmp.addPoints(b._cnt, cb / 2.0);
71+
res._variance = tmp._avg;
6372
return res;
6473
}
6574

6675
qvar_t& qvar_t::operator+=(double d) {
6776
assert(!std::isinf(d));
6877
avg_t::operator+=(d);
69-
auto diff = std::pow(d, 2.0) - _sq;
70-
_sq += diff / _cnt;
78+
auto nvar = std::pow(d - _avg, 2.0);
79+
assert(!std::isinf(nvar));
80+
if (_cnt == 1) _variance = nvar;
81+
else {
82+
nvar -= _variance;
83+
_variance += nvar / _cnt;
84+
}
7185
return *this;
7286
}
7387

7488
void qvar_t::addPoints(double weight, double d) {
7589
assert(weight >= 0);
7690
assert(_cnt >= 0);
7791
if (weight == 0) return;
92+
auto oa = _avg;
7893
avg_t::addPoints(weight, d);
79-
auto diff = std::pow(d, 2.0) - _sq;
80-
_sq += diff * (weight / _cnt);
94+
auto nvar = std::abs((d - oa)*(d - _avg));
95+
assert(!std::isinf(nvar));
96+
if (_cnt == weight) _variance = nvar;
97+
else {
98+
nvar -= _variance;
99+
_variance += (nvar * weight) / _cnt;
100+
}
101+
assert(_variance >= 0);
102+
assert(!std::isnan(_variance));
103+
assert(!std::isinf(_variance));
81104
}
82105

83106
double triangular_cdf(double mid, double width, double point) {
@@ -94,10 +117,10 @@ namespace prlearn {
94117
constexpr double minvar = 0.0001;
95118
if (std::min(a.cnt(), b.cnt()) <= 1)
96119
return;
97-
if (a.variance() == b.variance() && a.avg() == b.avg())
120+
if (a._variance == b._variance && a.avg() == b.avg())
98121
return;
99-
auto vara = std::max(minvar, a.variance());
100-
auto varb = std::max(minvar, b.variance());
122+
auto vara = std::max(minvar, a._variance);
123+
auto varb = std::max(minvar, b._variance);
101124

102125
double tval = std::abs(a.avg() - b.avg()) / std::sqrt(((vara * a.cnt()) + (varb * b.cnt())) / (a.cnt() * b.cnt()));
103126

src/structs.h

+8-30
Original file line numberDiff line numberDiff line change
@@ -1,21 +1,21 @@
11
/*
22
* Copyright Peter G. Jensen
3-
*
3+
*
44
* This program is free software: you can redistribute it and/or modify
55
* it under the terms of the GNU Lesser General Public License as published by
66
* the Free Software Foundation, either version 3 of the License, or
77
* (at your option) any later version.
8-
*
8+
*
99
* This program is distributed in the hope that it will be useful,
1010
* but WITHOUT ANY WARRANTY; without even the implied warranty of
1111
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1212
* GNU General Public License for more details.
13-
*
13+
*
1414
* You should have received a copy of the GNU Lesser General Public License
1515
* along with this program. If not, see <http://www.gnu.org/licenses/>.
1616
*/
1717

18-
/*
18+
/*
1919
* File: structs.h
2020
* Author: Peter G. Jensen
2121
*
@@ -33,8 +33,6 @@
3333
#include <cassert>
3434
#include <vector>
3535
#include <ostream>
36-
#include <iostream>
37-
3836
namespace prlearn {
3937

4038
struct avg_t {
@@ -56,7 +54,7 @@ namespace prlearn {
5654
} else {
5755
_cnt += weight;
5856
double diff = d - _avg;
59-
_avg += diff * (weight / _cnt); // add only "share" of difference
57+
_avg += ((diff * weight) / (double) _cnt); // add only "share" of difference
6058
}
6159
assert(!std::isnan(_avg));
6260
}
@@ -98,14 +96,15 @@ namespace prlearn {
9896

9997
qvar_t() = default;
10098

101-
qvar_t(double d, double w, double squared) {
99+
qvar_t(double d, double w, double v) {
102100
_avg = d;
103101
_cnt = w;
104-
_sq = squared;
102+
_variance = v;
105103
};
106104
// this is a dirty hijack!
107105
qvar_t& operator+=(double d);
108106
void addPoints(double weight, double d);
107+
double _variance = 0;
109108

110109
auto& avg() {
111110
return _avg;
@@ -128,27 +127,6 @@ namespace prlearn {
128127
}
129128
void print(std::ostream& stream) const;
130129
static qvar_t approximate(const qvar_t& a, const qvar_t& b);
131-
double variance() const {
132-
auto pow = std::pow(_avg, 2.0);
133-
if(pow >= _sq)
134-
return 0;
135-
return _sq - pow;
136-
}
137-
138-
void set_variance(double var) {
139-
_sq = std::pow(_avg, 2.0) + var;
140-
}
141-
142-
double& squared() {
143-
return _sq;
144-
}
145-
146-
const double& squared() const {
147-
return _sq;
148-
}
149-
150-
private:
151-
double _sq = 0;
152130
};
153131

154132
struct splitfilter_t {

0 commit comments

Comments
 (0)