-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfit_nn.py
63 lines (55 loc) · 1.94 KB
/
fit_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python3
"""
This script fits a NN model using clipnet.py. It requires a NN architecture file, which
must contain a function named construct_nn that returns a tf.keras.models.Model object.
It also requires a dataset_params.py file which specifies parameters and file paths
associated with the dataset of interest.
"""
import argparse
import logging
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "4"
logging.getLogger("tensorflow").setLevel(logging.FATAL)
import clipnet
def main():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("model_dir", type=str, help="directory to save models to")
parser.add_argument(
"--prefix",
type=str,
default="rnn_v10",
help="the prefix of the nn architecture file. Must contain a construct_nn \
method, an opt hash that contains all the optimizer hyperparameters, and a \
compile_params hash that specifies what loss and metrics are reported. \
Models will be saved under this prefix.",
)
parser.add_argument(
"--resume_checkpoint",
type=str,
default=None,
help="resume training from this model.",
)
parser.add_argument(
"--gpu",
type=int,
default=None,
help="Index of GPU to use (starting from 0). If not invoked, uses CPU.",
)
parser.add_argument(
"--n_gpus",
type=int,
default=0,
help="Number of GPUs to use. If not invoked, uses CPU.",
)
args = parser.parse_args()
if args.n_gpus > 1:
nn = clipnet.CLIPNET(n_gpus=args.n_gpus, prefix=args.prefix)
else:
nn = (
clipnet.CLIPNET(n_gpus=1, use_specific_gpu=args.gpu, prefix=args.prefix)
if args.gpu is not None
else clipnet.CLIPNET(n_gpus=0, prefix=args.prefix)
)
nn.fit(model_dir=args.model_dir, resume_checkpoint=args.resume_checkpoint)
if __name__ == "__main__":
main()