-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcourse_analyzer.py
89 lines (69 loc) · 2.98 KB
/
course_analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from collections import deque
from dataclasses import dataclass
from typing import Iterable
from course_scraper import Course
@dataclass
class LeveledCourse(Course):
level: int = 0
def __init__(self, course: Course, level: int):
super().__init__(**course.__dict__)
self.level = level
def assign_all_levels(courses: Iterable[Course]) -> Iterable[Course]:
'''This is what I wrote'''
course_levels = {}
visited_courses = set()
current_courses = set()
level = 0
remaining_courses = {course.id for course in courses}
while remaining_courses:
for course in courses:
if course.id in visited_courses:
continue
if set(course.must_courses + course.recommend_courses).issubset(visited_courses):
course_levels[course.id] = level
current_courses.add(course.id)
remaining_courses.remove(course.id)
visited_courses.update(current_courses)
current_courses.clear()
level += 1
return [LeveledCourse(course, level=course_levels[course.id]) for course in courses]
def topological_sort(courses: Iterable[Course]) -> Iterable[Course]:
'''
This function was written by ChatGPT.
Performs a topological sort on a collection of courses.
This function uses the Kahn's algorithm to perform a topological sort, which has a time complexity of O(n + m),
where n is the number of courses and m is the number of prerequisites.
'''
graph = {course.id: [] for course in courses}
indegrees = {course.id: 0 for course in courses}
# Build the graph and calculate the indegrees
for course in courses:
for prereq in course.must_courses + course.recommend_courses:
graph[prereq].append(course.id)
indegrees[course.id] += 1
# Perform a topological sort using a queue
queue = deque(
[course.id for course in courses if indegrees[course.id] == 0])
levels = {course.id: 0 for course in courses}
while queue:
curr = queue.popleft()
for neighbor in graph[curr]:
indegrees[neighbor] -= 1
if indegrees[neighbor] == 0:
queue.append(neighbor)
levels[neighbor] = levels[curr] + 1
return [LeveledCourse(course, level=levels[course.id]) for course in courses]
def find_max_level(courses: Iterable[LeveledCourse]) -> int:
return max(course.level for course in courses)
if __name__ == "__main__":
import timeit
setup = "from __main__ import load_courses, assign_all_levels, topological_sort; courses = load_courses()"
stmt1 = "assign_all_levels(courses)"
stmt2 = "topological_sort(courses)"
time1 = timeit.timeit(stmt=stmt1, setup=setup, number=100000)
time2 = timeit.timeit(stmt=stmt2, setup=setup, number=100000)
print("assign_all_levels:", time1)
print("topological_sort:", time2)
# assign_all_levels: 5.267825200004154
# assign_all_levels_chatgpt: 4.458090699998138
# ChatGPT wrote faster ;)