-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathS5b_Create_h5ad_From_Seurat_Object.Rmd
executable file
·147 lines (115 loc) · 4.21 KB
/
S5b_Create_h5ad_From_Seurat_Object.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
title: "Creating h5ad file from Seurat object"
author: "Vincent Gardeux"
date: "2025/01/14"
updated: "2025/02/12"
output:
html_document:
df_print: paged
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_knit$set(root.dir = "/data/gardeux/Neuro_Droso_ND75KD/")
```
## Libraries & functions
First, I'm loading the required libraries & functions
```{r}
suppressPackageStartupMessages(library(Seurat, lib.loc = "/software/Seuratv4/lib/")) # Seurat v4.4.0, library for single-cell analysis
suppressPackageStartupMessages(library(SeuratObject, lib.loc = "/software/Seuratv4/lib/")) # For compatibility purpose
suppressPackageStartupMessages(library(data.table)) # For writing DE gene file
suppressPackageStartupMessages(library(reticulate)) # For Python access
suppressPackageStartupMessages(library(Matrix)) # For writing DE gene file
suppressPackageStartupMessages(library(MatrixExtra)) # For writing DE gene file
suppressPackageStartupMessages(library(crayon)) # Just for bolding the console output :D
# Pick Python version for reticulate
reticulate::use_python("/usr/bin/python3.12", required = TRUE)
cat(bold("Seurat"), "version", as.character(packageVersion("Seurat")), "\n")
cat(bold("SeuratObject"), "version", as.character(packageVersion("SeuratObject")), "\n")
cat(bold("data.table"), "version", as.character(packageVersion("data.table")), "\n")
cat(bold("reticulate"), "version", as.character(packageVersion("reticulate")), "\n")
cat(bold("Matrix"), "version", as.character(packageVersion("Matrix")), "\n")
cat(bold("MatrixExtra"), "version", as.character(packageVersion("MatrixExtra")), "\n")
cat(bold("\nReticulate Python version used:\n"))
py_config()
```
## Parameters
```{r}
# Parameters
seurat_input <- "./data/Pan_neuro_integrated_FINAL.rds"
h5ad_output <- "./data/Pan_neuro_integrated_FINAL.h5ad"
gene_ensembl_mapping_path <- "./data/features.tsv"
# Random seed
set.seed(42)
```
## I.1 Reading Seurat object
First step is to read the Seurat object, previously created
```{r}
message("Loading Seurat object...")
data.seurat <- readRDS(seurat_input)
message(ncol(data.seurat), " cells were loaded")
message(nrow(data.seurat), " genes were loaded")
```
## I.2 Loading gene mapping from CellRanger output (I did not perform the CellRanger alignment)
```{r}
gene.mapping = fread(gene_ensembl_mapping_path, header = F, data.table = F)
colnames(gene.mapping) <- c("Ensembl", "Name", "Biotype")
gene.mapping$Name <- gsub(x = gene.mapping$Name, pattern = "_", replacement = "-")
rownames(gene.mapping) <- gene.mapping$Name
# To solve issue with ASAP DB
gene.mapping$Ensembl <- gsub(x = gene.mapping$Ensembl, pattern = "-", replacement = "_")
gene.mapping
```
## II. h5ad
NOTE: I could use sceasy or SeuratDisk option, but it does not do what I want. And there are many missing fields. So I'll create the h5ad from scratch.
# Prepare Cell attributes to put in h5ad
```{r}
# Cell metadata
obs <- data.seurat@meta.data
```
# Raw matrix (I remove colnames and rownames)
```{r}
# Raw count matrix
raw.X <- GetAssayData(object = data.seurat, assay = "RNA", slot = "counts")
```
# Prepare Gene metadata to put in h5ad
```{r}
# Gene metadata
var <- GetAssay(data.seurat, assay = "RNA")@meta.features
var$Accession <- gene.mapping[rownames(var),"Ensembl"]
var$Gene <- rownames(var)
var
```
# Normalized matrix
```{r}
# Normalized count matrix
X <- GetAssayData(object = data.seurat, assay = "RNA", slot = "data")
```
# Fix row names
```{r}
rownames(X) <- var[rownames(X), "Accession"]
rownames(raw.X) <- var[rownames(raw.X), "Accession"]
rownames(var) <- var$Accession
```
# Embeddings
```{r}
obsm <- NULL
reductions <- names(data.seurat@reductions)
if (length(reductions) > 0) {
obsm <- sapply(
reductions,
function(name) as.matrix(Seurat::Embeddings(data.seurat, reduction = name)),
simplify = FALSE
)
names(obsm) <- paste0("X_", tolower(names(data.seurat@reductions))) # More compatible with usual format
}
```
# Create h5ad file
```{r}
# AnnData object creation using reticulate
ad <- reticulate::import("anndata")
adata <- ad$AnnData(X = Matrix::t(X), raw = list(X = Matrix::t(raw.X), var = var), obs = obs, var = var, obsm = obsm)
```
# Write object to file
```{r}
adata$write(h5ad_output, compression = "gzip")
```