-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenre_Prediction.py
52 lines (49 loc) · 2.34 KB
/
Genre_Prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import librosa
import math
import numpy as np
class CNN():
"""
Predicts Genre of a song file using CNN
"""
def __init__(self,genre_list=None,SAMPLE_RATE=None,TRACK_DURATION=None,num_mfcc=None,n_fft=None,hop_length=None,
num_segments=None):
self.genre_list = genre_list if genre_list is not None else ['Blues','Classical','Country','Disco','Hip-Hop','Jazz','Metal','Pop','Reggae','Rock']
self.SAMPLE_RATE = SAMPLE_RATE if SAMPLE_RATE is not None else 22050
self.TRACK_DURATION = TRACK_DURATION if TRACK_DURATION is not None else 30
self.num_mfcc = num_mfcc if num_mfcc is not None else 13
self.n_fft = n_fft if n_fft is not None else 2048
self.hop_length = hop_length if hop_length is not None else 512
self.num_segments = num_segments if num_segments is not None else 10
def extract_features(self,file_path):
"""
Gets mel spectrograms for the audio file using the paramaters given during object initialization
"""
SAMPLES_PER_TRACK = self.SAMPLE_RATE * self.TRACK_DURATION
samples_per_segment = int(SAMPLES_PER_TRACK / self.num_segments)
num_mfcc_vectors_per_segment = math.ceil(samples_per_segment / self.hop_length)
signal, sample_rate = librosa.load(file_path, sr=self.SAMPLE_RATE)
X=list()
for d in range(self.num_segments):
start = samples_per_segment * d
finish = start + samples_per_segment
mfcc = librosa.feature.mfcc(y=signal[start:finish], sr=sample_rate, n_mfcc=self.num_mfcc, n_fft=self.n_fft, hop_length=self.hop_length)
mfcc = mfcc.T
if(len(mfcc) == num_mfcc_vectors_per_segment):
X.append(mfcc.tolist())
X=np.array(X)
X = X[..., np.newaxis]
X=X[0]
X = X[np.newaxis, ...]
return X
def predict_genre(self,file_path,model):
try:
X=self.extract_features(file_path)
except:
print("Features couldn't be extracted")
return None
print("Features extracted")
prediction = model.predict(X)
prediction=list(prediction[0])
genre_probability_dict=dict(zip(self.genre_list, prediction))
print("Genre probabilties computed")
return genre_probability_dict