-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecute_digipod.py
101 lines (74 loc) · 3.05 KB
/
execute_digipod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import logging
import os
import re
import sys
import pendulum
from sqlalchemy import text
current_dir = os.path.dirname(__file__)
parent_dir = os.path.dirname(current_dir)
sys.path.insert(0, parent_dir)
os.environ["ENV_FILE"] = os.path.join(current_dir, "digipod.env")
from execution_engine.omop.vocabulary import standard_vocabulary
from digipod.terminology.vocabulary import DigiPOD
standard_vocabulary.register(DigiPOD)
from execution_engine.builder import ExecutionEngineBuilder
from execution_engine.clients import omopdb
from execution_engine.omop import cohort
from execution_engine.settings import get_config, update_config
import digipod.recommendation.recommendation_0_1
import digipod.recommendation.recommendation_0_2
import digipod.recommendation.recommendation_2_1
# enable multiprocessing with all available cores
# update_config(multiprocessing_use=False, multiprocessing_pool_size=-1)
# disable multiprocessing
update_config(multiprocessing_use=False)
result_schema = get_config().omop.db_result_schema
# Validate the schema name to ensure it's safe to use in the query
if not re.match(r"^[a-zA-Z_][a-zA-Z0-9_]*$", result_schema):
raise ValueError(f"Invalid schema name: {result_schema}")
# Optional: Truncate all tables before execution
with omopdb.begin() as con:
schema_exists = (
con.execute(
text(
"SELECT count(*) FROM information_schema.schemata WHERE schema_name = :schema_name;"
),
{"schema_name": result_schema},
).fetchone()[0]
> 0
)
# If the schema exists, proceed to truncate tables
if schema_exists:
con.execute(
text(
"TRUNCATE TABLE "
f" {result_schema}.comment, "
f" {result_schema}.recommendation, "
f" {result_schema}.criterion, "
f" {result_schema}.execution_run, "
f" {result_schema}.result_interval, "
f" {result_schema}.recommendation, "
f" {result_schema}.population_intervention_pair "
"RESTART IDENTITY",
)
)
recommendation_package_version = "latest"
start_datetime = pendulum.parse("2024-01-01 00:00:00+01:00")
end_datetime = pendulum.parse("2025-05-31 23:59:59+01:00")
builder = ExecutionEngineBuilder()
# Build the ExecutionEngine
engine = builder.build()
logging.getLogger().setLevel(logging.DEBUG)
# we'll rather build recommendations
# TODO: we need to register the recommendations in the database, if they haven't been registered!
recommendations: list[cohort.Recommendation] = [
digipod.recommendation.recommendation_0_2.rec_0_2_Delirium_Screening,
digipod.recommendation.recommendation_2_1.RecCollCheckRFAdultSurgicalPatientsPreoperatively,
digipod.recommendation.recommendation_0_1.rec_0_1_Delirium_Screening,
]
for recommendation in recommendations:
print(recommendation.name)
engine.register_recommendation(recommendation)
engine.execute(
recommendation, start_datetime=start_datetime, end_datetime=end_datetime
)