-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMalariaPAK.Rmd
363 lines (231 loc) · 9.66 KB
/
MalariaPAK.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
---
title: "Malaria_temperature_Pakistan"
author: "Dinesh Bhandari"
date: "26/01/2024"
output:
pdf_document: default
word_document: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_knit$set(root.dir = "//ad.monash.edu/home/User091/dbha0027/Desktop/MalariaPAK")
library(splines)
library(MASS)
library(dlnm)
library(mvmeta)
library(splines)
library(tsModel)
library(lubridate)
library(tidyverse)
library(readr)
library(haven)
library(performance)
library(ggplot2)
library(dplyr)
library(MuMIn)
library(gridExtra)
```
```{r dataload, echo=TRUE}
setwd("//ad.monash.edu/home/User091/dbha0027/Desktop/MalariaPAK")
Lakki <- read.csv("Malaria_Lakki_Final1.csv", stringsAsFactors = FALSE)
Lakki$date <- dmy(Lakki$Date)
Lakki$date <- as.Date(Lakki$date, format = "%d/%m/%y")
# Calculate monthly averages for each variable
```
```{r model, echo=TRUE}
lag <- 3
arglag <- list(fun="integer")
cb <- crossbasis(Lakki$Tmean, lag=3, argvar=list(fun="thr",thr=22.4), arglag=list(fun="integer"))
plot(cb)
model <- glm(total_cases ~ cb + ns(Lakki$date, df=2*9) + offset(log(Population)) + ns(Lakki$Relative_Humidity, df=2) + ns(Lakki$Precipitation, df=2), Lakki, family=quasipoisson (link="log"), maxit = 50, na.action="na.exclude")
fqaic <- function(model) {
loglik <- sum(dpois(model$y,model$fitted.values,log=TRUE))
phi <- summary(model)$dispersion
qaic <- -2*loglik + 2*summary(model)$df[3]*phi
return(qaic)
}
fqaic(model)
cp <- crosspred(cb, model,at = 22.4:35.3,by=0.1)
pred <- crosspred(cb, model, at = 22.4:35.3, by=0.1)
allRRfit <- (pred$allRRfit-1)*100
allRRfitlow <- (pred$allRRlow-1)*100
allRRfithigh <- (pred$allRRhigh-1)*100
df <- data.frame(matrix(nrow=length(pred$predvar), ncol=4))
colnames(df) <- c("temp", "RRfit", "RRlow", "RRhigh")
df$temp <- pred$predvar
df$RRfit <- (pred$allRRfit-1)*100
df$RRlow <- (pred$allRRlow-1)*100
df$RRhigh <- (pred$allRRhigh-1)*100
predper <- c(seq(0,1,0.1),2:98,seq(99,100,0.1))
predvar <- quantile(Lakki$EHF,1:99/100,na.rm=T)
xlab <- expression(paste("Temperature (",degree,"C)"))
#pdf("Figure 1.pdf",height=4.5,width=10)
layout(matrix(c(1,2),ncol=2,byrow=T))
# PLOT - 3D
par(mar=c(2,3,3,1),mgp=c(3,1,0),las=1,cex.axis=0.9,cex.lab=1)
plot(pred,"3d",ltheta=150,xlab="Temperature (C)",ylab="Lag",zlab="RR",
col=gray(0.9), main="Exposure-lag-response")
par(mar=c(5,4,3,1),mgp=c(3,1,0),las=1,cex.axis=0.9,cex.lab=1)
plot(pred,"overall",col="red",ylim=c(0.9,4.0),axes=T,lab=c(6,5,7),xlab=xlab,
ylab="RR",main="Overall")
red <- crossreduce(cb,model,at = 22.4:35.3,by=0.1)
coef <- coef(red)
vcov <- vcov(red)
```
```{r Projection, echo=TRUE}
#oi per day of the year
oi <- rep(Lakki$total_cases, length=nrow(Lakki))
#oi average per day of the year
oimm <- tapply(Lakki$total_cases,as.numeric(format(Lakki$date,"%j")),
mean,na.rm=T)[seq(12)]
# total oi in baseline period
oiperiod <- sum(oimm)*9
baselineperiod <- "2014-2022"
# *DEFINE SEQUENCE OF PERIODS FOR THE PREDICTIONS (PROJECTED)
baselineseqperiod <- factor(rep(baselineperiod,length.out=12*9))
seqperiod <- factor(c(as.numeric(baselineseqperiod)))
levels(seqperiod) <- c(baselineseqperiod)
# (2) DIMENSION - RANGE OF TEMPERATURES
temprange <- c("tot","heat")
# (3) DIMENSION - ABSOLUTE AN/DIFFERENCE IN AN
absrel <- c("abs")
# (6) DIMENSION - NUMBER OF ITERATION IN THE MONTE-CARLO SIMULATION
nsim <- 1000
# DEFINE THE ARRAY
ansim_bs <- array(NA,dim=c(length(levels(seqperiod)),length(temprange),
length(absrel), nsim+1),
dimnames=list(levels(seqperiod),temprange,absrel,
c("est",paste0("sim",seq(nsim)))))
argvar=list(fun="thr",thr=22.4)
# (4) EXTRAPOLATION OF THE CURVE:
# - DERIVE THE CENTERED BASIS USING THE PROJECTED TEMPERATURE SERIES
# AND EXTRACT PARAMETERS
cenvec <- do.call(onebasis,c(list(x=22.4),argvar))
bvar <- do.call(onebasis,c(list(x=Lakki$Tmean),argvar))
bvarcen <- scale(bvar,center=cenvec,scale=F)
# INDICATOR FOR COLD/HEAT DAYS
indheat <- 22.4:35.3
# (5) IMPACT PROJECTIONS:
# - COMPUTE THE DAILY CONTRIBUTIONS OF ATTRIBUTABLE DEATHS
anbaseline <- (1-exp(-bvarcen%*%coef(red)))*oi
# - SUM AN (ABS) BY TEMPERATURE RANGE AND PERIOD, STORE IN ARRAY BEFORE THE ITERATIONS
# NB: ACCOUNT FOR NO TEMPERATURE BELOW/ABOVE CEN FOR GIVEN PERIODS
ansim_bs[,"tot","abs",1] <- tapply(anbaseline,seqperiod,sum)
ansim_bs[,"heat","abs",1] <- tapply(anbaseline[indheat],factor(seqperiod[indheat]),sum)
# (6) ESTIMATE UNCERTAINTY OF THE PROJECTED AN:
# - SAMPLE COEF ASSUMING A MULTIVARIATE NORMAL DISTRIBUTION
set.seed(13041975)
coefsim <- mvrnorm(nsim,coef,vcov)
# - LOOP ACROSS ITERATIONS
for(s in seq(nsim)) {
# COMPUTE THE DAILY CONTRIBUTIONS OF ATTRIBUTABLE DEATHS
anbaseline <- (1-exp(-bvarcen%*%coefsim[s,]))*oi
# STORE THE ATTRIBUTABLE MORTALITY
ansim_bs[,"tot","abs",s+1] <- tapply(anbaseline,seqperiod,sum)
ansim_bs[,"heat","abs",s+1] <- tapply(anbaseline[indheat],factor(seqperiod[indheat]),sum)
}
estci <- c("est","ci.l","ci.u")
anabs_bs <- afabs_bs <- array(NA,dim=c(length(levels(seqperiod)),
length(estci),length(temprange)),
dimnames=list(levels(seqperiod),estci,temprange))
# ATTRIBUTABLE NUMBERS
# ABSOLUTE will be estimated at 0.5 and 90 percentile
anabs_bs[,"est",] <- apply(ansim_bs,1:2,mean)
anabs_bs[,"ci.l",] <- apply(ansim_bs,1:2,quantile,0.025)
anabs_bs[,"ci.u",] <- apply(ansim_bs,1:2,quantile,0.975)
# ATTRIBUTABLE FRACTION
afabs_bs[,,] <- anabs_bs[,,]/oiperiod*100
afabs_bs
#######################future projections
rcp4p5 <- read.csv("Lakki_2040s_MME_45.csv")
rcp4p5$date <- dmy(rcp4p5$date)
rcp8p5 <- read.csv("Lakki_2040s_MME_85.csv")
rcp8p5$date <- as.Date(rcp8p5$date, format = "%d/%m/%Y")
oimoy <- tapply(Lakki$total_cases,as.numeric(format(Lakki$date,"%m")),
mean,na.rm=T)[seq(12)]
while(any(isna <- is.na(oimoy)))
oimoy[isna] <- rowMeans(Lag(oimoy,c(-1,1)),na.rm=T)[isna]
oiproj <- rep(oimoy,length=nrow(rcp4p5))
########################################
red <- crossreduce(cb,model,at = 22.4:35.3,by=0.1)
coef <- coef(red)
vcov <- vcov(red)
# STORE THE MORTALITY BY PERIOD
oiperiod <- sum(oimm)*9
# *LABELS THE PROJECTION PERIODS
projperiod <- "2044-2052"
# *DEFINE SEQUENCE OF PERIODS FOR THE PREDICTIONS (PROJECTED)
#baselineseqperiod <- factor(rep(baselineperiod,length.out=365.25*13))
projseqperiod <- factor(rep(projperiod,length.out=12*length(seq(2044,2052))))
seqperiod <- factor(c(as.numeric(projseqperiod)))
levels(seqperiod) <- c(projperiod)
# (2) DIMENSION - RANGE OF TEMPERATURES
temprange <- c("tot","heat")
# (3) DIMENSION - ABSOLUTE AN/DIFFERENCE IN AN
absrel <- c("abs")
projperiod
# (4) DIMENSION - GENERAL CIRCULATION MODELS
# *LIST OF GCMs
# (5) DIMENSION - SCENARIO DIMENSION
# *LIST OF REPRESENTATIVE CONCENTRATION PATHWAYS SCENARIOS
rcp <- c(RCP4.5="rcp4p5",RCP8.5="rcp8p5")
# (6) DIMENSION - NUMBER OF ITERATION IN THE MONTE-CARLO SIMULATION
nsim <- 1000
# DEFINE THE ARRAY
ansim <- array(NA,dim=c(length(levels(seqperiod)),length(temprange),
length(absrel), length(rcp),nsim+1),
dimnames=list(levels(seqperiod),temprange,absrel,
names(rcp), c("est",paste0("sim",seq(nsim)))))
# RUN LOOP PER RCP
for (i in seq(rcp)) {
# PRINT
cat("\n\n", names(rcp)[i], "\n")
# SELECTION OF THE PROJECTED TEMPERATURE SERIES FOR A SPECIFIC RCP SCENARIO
Tmeanproj <- get(rcp[[i]])
# EXTRAPOLATION OF THE CURVE FOR ENSEMBLE MODEL:
# DERIVE THE CENTERED BASIS USING THE PROJECTED TEMPERATURE SERIES
# AND EXTRACT PARAMETERS
argvarproj=list(fun="thr",thr=22.4)
bvar <- do.call(onebasis,c(list(x=Tmeanproj$Tmean),argvarproj))
cenvec <- do.call(onebasis,c(list(x=22.4),argvarproj))
bvarcen <- scale(bvar, center = cenvec, scale = FALSE)
# INDICATOR FOR COLD/HEAT DAYS
indheat <- 22.4:35.3
# (5) IMPACT PROJECTIONS:
# - COMPUTE THE DAILY CONTRIBUTIONS OF ATTRIBUTABLE DEATHS
an <- (1-exp(-bvarcen%*%coef(red)))*oiproj
# - SUM AN (ABS) BY TEMPERATURE RANGE AND PERIOD, STORE IN ARRAY BEFORE THE ITERATIONS
# NB: ACCOUNT FOR NO TEMPERATURE BELOW/ABOVE CEN FOR GIVEN PERIODS
ansim[,"tot","abs",i,1] <- tapply(an,seqperiod,sum)
ansim[,"heat","abs",i,1] <- tapply(an[indheat],factor(seqperiod[indheat]),sum)
# (6) ESTIMATE UNCERTAINTY OF THE PROJECTED AN:
# - SAMPLE COEF ASSUMING A MULTIVARIATE NORMAL DISTRIBUTION
set.seed(13041975)
coefsim <- mvrnorm(nsim,coef,vcov)
# - LOOP ACROSS ITERATIONS
for(s in seq(nsim)) {
# COMPUTE THE DAILY CONTRIBUTIONS OF ATTRIBUTABLE DEATHS
an <- (1-exp(-bvarcen%*%coefsim[s,]))*oi
# STORE THE ATTRIBUTABLE MORTALITY
ansim[,"tot","abs",i,s+1] <- tapply(an,seqperiod,sum)
ansim[,"heat","abs",i,s+1] <- tapply(an[indheat],factor(seqperiod[indheat]),sum)
}
}
estci <- c("est","ci.l","ci.u")
anabs <- afabs <- array(NA,dim=c(length(levels(seqperiod)),
length(estci),length(temprange),length(rcp)),
dimnames=list(levels(seqperiod),estci,temprange,names(rcp)))
# ATTRIBUTABLE NUMBERS
# ABSOLUTE will be estimated at 0.5 and 90 percentile
anabs[,"est",,"RCP4.5"] <- apply(ansim[,,"abs","RCP4.5",],1:1,mean)
anabs[,"ci.l",,"RCP4.5"] <- apply(ansim[,,"abs","RCP4.5",],1:1,quantile,0.025)
anabs[,"ci.u",,"RCP4.5"] <- apply(ansim[,,"abs","RCP4.5",],1:1,quantile,0.975)
anabs[,"est",,"RCP8.5"] <- apply(ansim[,,"abs","RCP8.5",],1:1,mean)
anabs[,"ci.l",,"RCP8.5"] <- apply(ansim[,,"abs","RCP8.5",],1:1,quantile,0.025)
anabs[,"ci.u",,"RCP8.5"] <- apply(ansim[,,"abs","RCP8.5",],1:1,quantile,0.975)
dim(ansim[, , "abs","RCP4.5", ])
# ATTRIBUTABLE FRACTION
afabs[,,,] <- anabs[,,,]/oiperiod*100
afabs
afabs_bs
```