forked from alexandrebarachant/bci-challenge-ner-2015
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross_valid.py
154 lines (125 loc) · 5.19 KB
/
cross_valid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# -*- coding: utf-8 -*-
import yaml
import sys
import numpy as np
import pandas as pd
from time import time
from sklearn.pipeline import make_pipeline
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import KFold
from collections import OrderedDict
from multiprocessing import Pool
from functools import partial
# local import
from classif import updateMeta, baggingIterator
def from_yaml_to_func(method, params):
prm = dict()
if params is not None:
for key, val in params.items():
prm[key] = eval(str(val))
return eval(method)(**prm)
def make_cv(kfolds, X, Labels, User, Meta, clf, opts):
users = np.unique(User)
toPredData = []
Gauc = []
for train_users, test_users in kfolds[1]:
allProb = 0
test_index = np.array([True if u in set(users[test_users]) else False for u in User])
if 'bagging' in opts:
bagging = baggingIterator(opts, [users[i] for i in train_users])
else:
bagging = [[-1]]
for bag in bagging:
bagUsers = np.array([True if u in set(bag) else False for u in User])
train_index = np.logical_xor(np.logical_not(test_index), bagUsers)
try:
# train
updateMeta(clf, Meta[train_index])
clf.fit(X[train_index, :, :], Labels[train_index])
# predict
prob = []
for ut in np.unique(users[test_users]):
updateMeta(clf, Meta[User == ut, ...])
prob.extend(clf.predict(X[User == ut, ...]))
prob = np.array(prob)
allProb += prob / len(bagging)
except:
print(kfolds[0])
print([users[i] for i in train_users])
print(bag)
continue
# save & return
predictions = OrderedDict()
predictions['user'] = User[test_index]
predictions['label'] = Labels[test_index]
predictions['prediction'] = allProb
if 'leak' in opts:
predictions['prediction'] += opts['leak']['coeff'] * (1 - Meta[test_index, -1])
predictions = pd.DataFrame(predictions)
Gauc.append(roc_auc_score(predictions.label, predictions.prediction))
toPredData.append(predictions)
predData = pd.concat(toPredData)
Sauc = [roc_auc_score(predData.loc[predData.user == i].label, predData.loc[predData.user == i].prediction) for i in
np.unique(predData.user)]
print('Rep %d: gAUC (mean of folds) %0.5f, sAUC %0.5f (%0.5f)' % (
kfolds[0], np.mean(Gauc), np.mean(Sauc), np.std(Sauc)))
return [Gauc, Sauc]
# load parameters file
yml = yaml.load(open(sys.argv[1]), Loader=yaml.FullLoader)
# imports
for pkg, functions in yml['imports'].items():
stri = 'from ' + pkg + ' import ' + ','.join(functions)
exec(stri)
# parse pipe function from parameters
pipe = []
for item in yml['pipeline']:
for method, params in item.items():
pipe.append(from_yaml_to_func(method, params))
# create pipeline
clf = make_pipeline(*pipe)
opts = yml['MetaPipeline']
if opts is None:
opts = {}
# load files
X = np.load('./preproc/epochs.npy')
Labels, User = np.load('./preproc/infos.npy')
Meta = np.load('./preproc/meta_leak.npy') if 'leak' in opts else np.load('./preproc/meta.npy')
users = np.unique(User)
# parallel CV
np.random.seed(5)
folds = yml['CrossVal']['folds']
repetitions = yml['CrossVal']['repetitions']
cores = yml['CrossVal']['cores']
kfolds = [[i, list(KFold(folds, shuffle=True).split(users))] for i in range(repetitions)]
np.random.seed(432432)
t = time()
pMakeCV = partial(make_cv, X=X, Labels=Labels, User=User, Meta=Meta, clf=clf,
opts=opts) # pool function is able to process only 1 argument, so the rest has to be set fixed
pool = Pool(processes=cores) # define number of cores
results = pool.map(pMakeCV, kfolds, chunksize=1) # apply parallel processing
pool.close() # close parallel processes after execution (frees memory)
print("Done in " + str(time() - t) + " second")
# calculating performance
gAUC = np.concatenate([i[0] for i in results]) # mean of folds
sAUC = [np.mean(i[1]) for i in results]
indAUC = np.array([i[1] for i in results])
indAUC = np.mean(indAUC, axis=0)
print('Global AUC : %.5f (%.5f)' % (np.mean(gAUC), np.std(gAUC)))
print('Subject AUC : %.5f (%.5f)' % (np.mean(sAUC), np.std(sAUC)))
# writing it down
import os
comment = yml['CrossVal']['comments']
path = yml['CrossVal']['path']
pipelineSteps = [str(clf.steps[i][1]).replace('\n', '').replace(' ', '') for i in range(len(clf.steps))]
if not os.path.isfile(path):
fd = open(path, 'w')
fd.write('comment;folds;reps;gAUC mean;gAUC std;sAUC mean;sAUC std;user' + ";user".join(
map(str, list(map(int, users)))) + ';leak;bagging;pipeline\n')
fd.close()
fd = open(path, 'a')
leakStr = 'on' if 'leak' in opts else 'off'
bagStr = '-'.join([str(opts['bagging']['bag_size']), str(opts['bagging']['models'])]) if 'bagging' in opts else 'off'
toWrite = [comment] + list(map(str, [folds, repetitions, np.mean(gAUC), np.std(gAUC), np.mean(sAUC), np.std(sAUC)])) + [
str(i) for i in indAUC] + [leakStr, bagStr] + pipelineSteps
fd.write(';'.join(toWrite) + '\n')
fd.close()