forked from voloudakislab/PheMED
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbootstrap.py
306 lines (274 loc) · 11.2 KB
/
bootstrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from importlib import reload
import sys
import warnings
#from tqdm import tqdm_notebook
from scipy.optimize import minimize
from scipy.stats import norm
from scipy.stats import normaltest
from scipy.stats import shapiro
from scipy.stats import anderson
#p.seterr(all='warn')
def df_row_shift(df,start_index):
if start_index > 0:
new_start_index = start_index
else:
new_start_index = -1*start_index #as per definition in paper
#new_start_index = df.shape[0] - np.abs(start_index)
df_start = df.loc[new_start_index:df.shape[0]]
#df_end = df.loc[0:new_start_index - 1]
#all wrap around values should be replaced with mean so as not to contribute to R(k)
#for var in df_end.columns:
# if df_end[var].dtypes == 'float64':
# df_end[var] = df[var].mean()
#df_final = pd.concat([df_start,df_end])
return df_start
def compute_autocorr(df, var, shift_range = 1000, start = -1):
#will be buggy if you chooose too few rows for autocorr
if start != 0:
start = -1*shift_range
df_corr = pd.DataFrame(columns = ['Shift','CovRatio','BaseCov'])
mean_df = np.abs(df[var]).mean()
cov_denominator = (1/df.shape[0])*np.dot(np.abs(df[var]) - mean_df,
np.abs(df[var]) - mean_df)
for i in np.arange(start,shift_range):
shift = i + 1
#print(df.shape)
#print(shift)
df_shifted = df_row_shift(df, shift)
#print(df_shifted.shape)
cov = (1/df.shape[0])*np.dot(np.abs(df_shifted[var]) - mean_df,
np.abs(df.loc[0:df.shape[0] - np.abs(shift) - 1,var]) - mean_df) #use normalization constant 1/N as per paper
rsq = cov/cov_denominator
base_cov = cov
df_corr.loc[i] = [shift, rsq,base_cov]
return df_corr
def compute_block_size(df_corr, df_meta):
solution = 'Not Found'
start_index = 0
df_corr_mini = df_corr.loc[df_corr['Shift'] >= 0].reset_index(drop = True)
#print(df_corr_mini.head())
while solution == 'Not Found':
window = int(np.ceil(np.max([5, np.sqrt(np.log10(df_meta.shape[0]))])))
#print(window)
indep_threshold = 2*np.sqrt(np.log10(df_meta.shape[0])/df_meta.shape[0])
score = (df_corr_mini.loc[start_index + 1: start_index + window + 1,'CovRatio'] < indep_threshold).mean()
if score == 1:
solution = 'Found'
else:
start_index += 1
if start_index >= df_corr_mini.shape[0] + 1:
solution = 'Found' #will print out warning
return start_index
def trap_function(x, total_distance = 10):
if np.abs(x) > total_distance:
return 0
elif np.abs(x) <= total_distance/2:
return 1
else:
return 2*(1 - np.abs(x/total_distance))
def compute_g_and_d(df_corr, block_size):
df_corr['AbsShift'] = np.abs(df_corr['Shift'])
df_corr_mini = df_corr.loc[df_corr['AbsShift'] <= block_size].copy() #fixes loc issue
df_corr_mini['Lambda'] = df_corr_mini['Shift'].apply(lambda x: trap_function(x, total_distance = block_size))
df_corr_mini['LambdaG'] = np.multiply(df_corr_mini['Lambda'], df_corr_mini['AbsShift'])
#print(df_corr_mini.head())
return [np.dot(df_corr_mini['LambdaG'], df_corr_mini['BaseCov']),
(4/3)*np.dot(df_corr_mini['Lambda'], df_corr_mini['BaseCov'])**2]
def compute_final_block_size(df_meta, g, d):
return int(np.ceil((df_meta.shape[0]*2*(g**2)/d)**(1/3)))
def circular_block_bootstrap(rng,df, block_size):
#find how many blocks we are grabbing
n_samples = int(np.floor(df.shape[0]/block_size))
#compute starting point of blocks
rand_rows = rng.integers(df.shape[0], size = (n_samples,1))
#compute entire block explicitly
selected_rows = rand_rows + np.multiply(np.ones((n_samples,block_size)), np.arange(0,block_size))
#keep things in mod arithmetic
selected_rows = np.remainder(selected_rows, df.shape[0])
#choose selected rows
df_sample = df.loc[selected_rows.flatten()].reset_index(drop = True)
return df_sample
#functions for computing p-values
def simple_p_test(df):
#check n_successes, n_failures
high_dilution_shape = df.loc[df['Alpha'] > 1].shape[0]
low_dilution_shape = df.loc[df['Alpha'] <= 1].shape[0]
valid_test_flag = False
if high_dilution_shape >= 10 and low_dilution_shape >= 10:
valid_test_flag = True
min_shape = np.min([high_dilution_shape, low_dilution_shape])
return 2*min_shape/df.shape[0], valid_test_flag
def norm_alpha(df):
if df['Alpha'].mean() > 1:
df['Alpha'] = np.power(df['Alpha'], -1)
return df
def compute_normal_p(data):
mean = data['Alpha'].mean()
sd = data['Alpha'].std()
#print(mean, sd)
z = (1 - mean)/sd
return 2*(1 - norm.cdf(z))
def normality_check(data):
passed_checks = True
stat, p = shapiro(data['Alpha'])
#print('Shapiro', stat, p)
if p < .05:
passed_checks = False
stat, p = normaltest(data['Alpha'])
#print('DAgostinos Normal Test', stat, p)
if p < .05:
passed_checks = False
result = anderson(data['Alpha'])
#print('Anderson Statistic: %.3f' % result.statistic)
sl, cv = result.significance_level[2], result.critical_values[2]
if result.statistic >= result.critical_values[2]:
passed_checks = False
#print('%.3f: %.3f, data looks normal (fail to reject H0)' % (sl, cv))
#print('%.3f: %.3f, data does not look normal (reject H0)' % (sl, cv))
return passed_checks
#EVT
def grab_top_values(df_results, top_n = 250):
#make the extreme values increasing towards the null if consistently above
if df_results['Alpha'].mean() > 1:
df_temp = df_results.sort_values(by = 'Alpha', ascending = True).reset_index(drop = True)
df_temp['Alpha'] = np.power(df_temp['Alpha'], -1)
else:
df_temp = df_results.sort_values(by = 'Alpha', ascending = False).reset_index(drop = True)
base_alpha = df_temp.loc[top_n, 'Alpha']
return df_temp.loc[0:top_n - 1,'Alpha'] - base_alpha, base_alpha
def compute_covar(a, k, n):
return ((1-k)/n)*np.array([[2*(a**2), a],[a,(1 - k)]])
#grab minimum eigenvalue
def grab_min_eval(matrix):
return np.min(np.linalg.eigvalsh(matrix))
def gpd_tail_p(x,k,a):
term = k*x/a
if term > 1:
return 0
else:
return 1 - (1 - (1 - term)**(1/k))
def compute_full_mle(alpha_vals, vals):
k = vals[0]
a = vals[1]
a = np.max([1e-8,a, k*np.max(alpha_vals) + 1e-8])
n = alpha_vals.shape[0]
ratio = k/a
mle = -n*np.log(a) - (1 - (1/k))*np.log(1 - ratio*alpha_vals).sum()
return mle
def compute_anderson_darling(alpha_vals, k, a):
#alpha_vals = alpha_vals[:-1]
p_vals = alpha_vals.apply(lambda x: 1 - gpd_tail_p(x, k, a)).values
#print(p_vals[0:5])
reversed_p_vals = p_vals[::-1]
#print(reversed_p_vals)
n = p_vals.shape[0]
#print(n)
log_p_sum = np.log(reversed_p_vals) + np.log(1 - p_vals)
factors = 2*(np.arange(n) + 1) - 1
log_p_sum = np.multiply(factors, log_p_sum)
#print(log_p_sum)
stat = -n -(1/n)*np.sum(log_p_sum)
return stat, p_vals
def grab_threshold(k):
#grabs cutoff value at p = .05
rounded_k = k #np.round(k, 1)
if rounded_k < -.9:
return .771
elif rounded_k < -.5:
return .83
elif rounded_k < -.2:
return .903
elif rounded_k < -.1:
return .935
elif rounded_k < 0:
return .974
elif rounded_k < .1:
return 1.02
elif rounded_k < .2:
return 1.074
elif rounded_k < .3:
return 1.14
elif rounded_k < .4:
return 1.221
else:
return 1.321
def fit_gpd(df, initial_vals = np.array([.2,.01]), bruteforce_initializer = True):
fit_found = False
top_n = 250
#df_output = pd.DataFrame(columns = [''])
while fit_found == False and top_n > 20:
#print(top_n)
alpha_vals, base_alpha = grab_top_values(df, top_n = np.min([top_n,df.shape[0] - 1]))
if bruteforce_initializer:
initial_vals = get_starting_vals(alpha_vals)
opt = minimize(lambda x: -1*compute_full_mle(alpha_vals, x), initial_vals,
method = 'Nelder-Mead', options = {'maxiter':10000})
k = opt.x[0]
a = opt.x[1]
#print('Optimization', k, a)
anderson_threshold = grab_threshold(k)
a = np.max([1e-8,a, k*np.max(alpha_vals) + 1e-6])
anderson_stat, _ = compute_anderson_darling(alpha_vals, k, a)
#print(anderson_stat)
if anderson_stat < anderson_threshold:
fit_found = True
#print('Fit Found', top_n, anderson_stat, anderson_threshold)
else:
top_n = top_n - 10
return top_n, k, a, alpha_vals, base_alpha, fit_found
def compute_evt_p(rng, logger, df, n_tail, a, k, n_sim = int(1e4)):
covar_matrix = compute_covar(a,k,n_tail)
min_eval = grab_min_eval(covar_matrix)
logger.info("Using Extreme Value Theory")
if min_eval < 0:
logger.warning("Minimum Eigenvalue in Covariance Matrix is negative and equals {eval}".format(eval = np.round(min_eval,5)))
else:
logger.info("Minimum Eigenvalue in Covariance Matrix is {eval} and looks reasonable".format(eval = np.round(min_eval,5)))
#print(a, k, covar_matrix, n_sim)
sim_vars = rng.multivariate_normal([a,k], covar_matrix, size = n_sim)
p_sims = np.zeros(n_sim)
for i in range(n_sim):
p_sims[i] = 2*(n_tail/df.shape[0])*gpd_tail_p(1, sim_vars[i,1], sim_vars[i,0])
return np.mean(p_sims), min_eval
#brute force functions
def compute_profile_mle(alpha_vals, theta):
n = alpha_vals.shape[0]
theta = np.min([theta, 1/alpha_vals.max()])
mle = -n -1*np.log(1 - theta*alpha_vals).sum() - n*np.log(-((n*theta)**-1)*(np.log(1 - theta*alpha_vals).sum()))
return mle
def grab_params_from_theta(alpha_vals, theta):
n = alpha_vals.shape[0]
k = (-1/n)*np.log(1-theta*alpha_vals).sum()
a = k/theta
return k, a
def extract_theta_bounds(alpha_vals):
eps = 1e-6/np.mean(alpha_vals)
upper = np.max(alpha_vals)**-1 - eps
lower = -1*2*np.mean(alpha_vals)/alpha_vals[len(alpha_vals) - 2]
return lower, upper, eps
def plot_positive_theta(alpha_vals, n_steps = 1000):
df_plot = pd.DataFrame(columns = ['Theta','ProfileMLE'])
_, upper, eps = extract_theta_bounds(alpha_vals)
for i, x in enumerate(np.linspace(eps, upper, n_steps)):
mle = compute_profile_mle(alpha_vals, x)
df_plot.loc[i] = [x, mle]
return df_plot
def plot_negative_theta(alpha_vals, n_steps = 1000):
df_plot = pd.DataFrame(columns = ['Theta','ProfileMLE'])
lower, _, eps = extract_theta_bounds(alpha_vals)
for i, x in enumerate(np.linspace(lower, -1*eps, n_steps)):
mle = compute_profile_mle(alpha_vals, x)
df_plot.loc[i] = [x, mle]
return df_plot
def get_starting_vals(alpha_vals):
df_neg = plot_negative_theta(alpha_vals)
df_pos = plot_positive_theta(alpha_vals)
df_total = pd.concat([df_pos, df_neg])
theta_star = df_total.loc[df_total['ProfileMLE'] == df_total['ProfileMLE'].max()]
theta_star = theta_star['Theta'].values[0]
k,a = grab_params_from_theta(alpha_vals, theta_star)
return np.array([k,a])